Dedicated to a readership of academia, students, refractory manufacturers and refractory user industries from the sectors of iron and steel, non-ferrous metals, aluminium, cement, lime, glass and ceramics, high-performance composites and coatings, foundry, petrochemical, power generating and waste incineration.

The book addresses the fundamentals of refractory castable engineering with three distinct themes being presented in a sequence that not only considers the formulation concepts and properties but also the features and the optimization of different systems. Three chapters are dedicated to the fundamentals of formulation design linked to dispersion, particle size distribution and packing, and different binder additives. Subsequent chapters then address the installation and drying steps, as well as the effects associated with the main castable processing stages. The last four chapters move on to highlight the properties and optimization of traditional and novel monolithic formulations containing Magnesia, Spinel or Carbon and a treatise on the family of special castables. This perspective demonstrates the authors’ objectives to illustrate the various and complex steps and fundamentals involved in the design, processing and applications of these products. Furthermore, by applying the presented fundamentals for the development and production of such materials, high-performance castables can be developed, aiming to extend the equipment working life and cope with aggressive operational conditions. The authors were led by one of the world’s experts in the field of monolithic refractories, Prof. Victor C. Pandolfelli, from Federal University of Sao Carlos in Brazil, who compiled with his co-authors Dr. Ana Paula da Luz and Dr. Mariana A.L. Braulio this ten chapter book dedicated to the engineering of modern refractory systems. The book is unique as its content has been reviewed by fellow experts worldwide in the field of castables with Prof. Michel Rigaud acting as executive editor. It thus represents unrivalled peer reviewed content in terms of castable engineering compared to previous publications and provides the reader with a unifying holistic view of such complex subject.
Table of Contents

F.I.R.E. xiii
Foreword xv
Preface xvii

Chapter 1
Designing refractory castables

1. Introduction 1
2. Refractory castables' features 3
3. Book content overview 10
 3.1. Fundamentals on particle dispersion 10
 3.2. Particle size distribution and packing design 11
 3.3. Binder additives and their setting mechanisms 11
 3.4. Installation techniques, highlighting the shotcrete method 12
 3.5. Curing and drying behavior and their optimization 13
 3.6. Magnesia hydration and its effect on the performance of MgO-containing compositions 14
 3.7. Spinel-containing alumina-based castables 15
 3.8. Carbon-containing castables 15
 3.9. Designing the microstructure for specific applications 16
4. Final remarks 17
5. References 17

Chapter 2
Fundamentals on particle dispersion

1. Introduction 21
2. Driving force for agglomeration 22
3. Dispersion mechanisms 25
 3.1. Electrostatic mechanism 25
 3.2. Steric mechanism 31
 3.3. Electrosteric mechanism 36
Chapter 4
Refractory castable binders

1. Introduction 157

2. Hydraulic binders 161
 2.1. Calcium aluminate cements (CACs) 161
 2.2. Hydratable alumina (HA) 176
 2.3. Experimental techniques used to assess the binder hydration behavior and setting 179
 2.4. Effect of castable’s matrix and additives on binder hydration 191
 2.5. Evolution of CAC and HA-bonded castables’ properties during the curing stage 205

3. Chemical binders (phosphates) 211
 3.1. Bonding mechanisms 213

4. Colloidal binders 217
 4.1. Colloidal silica (CS) 219
 4.2. Colloidal alumina (CA) 235

5. Final remarks 241

6. References 245

Chapter 5
Installation techniques: focusing on shotcreting

1. Introduction 257

2. Evolution of installation techniques: why and when to select shotcrete? 261

3. Shotcreting castables 270
 3.1. Dry and wet mixes 272
 3.2. Material requirements and operational aspects 279

4. Final remarks 304

5. References 309
Chapter 8
Spinel-containing alumina-based refractory castables

1. Introduction 497
2. Formulation design using pre-formed spinel 503
 2.1. General features 503
 2.2. **Post-mortem** evaluation of a pre-formed spinel composition 509
 2.3. Mastering the microstructure to optimize the pre-formed spinel castable properties 513
3. Formulation design with *in situ* spinel formation 530
 3.1. Mechanism of *in situ* spinel formation 531
 3.2. Mastering the microstructure to optimize the spinel-forming castable properties 537
4. Final remarks 577
5. References 579
6. Further reading 591

Chapter 9
Carbon-containing refractory castables: design, properties and applications

1. Introduction 593
2. Raw materials for carbon-containing castables 595
 2.1. Carbon sources 596
 2.2. Other components 602
3. Basic features for carbon-containing castable design 603
 3.1. Water wettability and dispersion of graphite 603
 3.2. Carbon oxidation 622
4. Applications 650
5. Final remarks 655
6. References 656
7. Further reading 664