Interface Reactions in Fine-Grained Al2O3-Ceramics with TiO2- and ZrO2-Additions for Refractory Applications as Investigated by XCT and EBSD

Harry Berek, Christos G. Aneziris, Dániel Veres

TU Bergakademie Freiberg, Institute of Ceramic, Glass and Construction Materials, 09596 Freiberg

Revision 06.10.2011, 25.10.2011

Volume 4, Issue 1, Pages 85 - 90


Fine-grained Al2O3-ceramics with TiO2- and ZrO2-additions (AZT) exhibit superior thermal shock performance. Impressive results could be shown using bending tests before and after a thermal shock. The reasons for this behaviour have to be investigated in the microstructure. In the present paper the combined possibilities of X-Ray computed tomography (XCT) and electron backscatter diffraction (EBSD) for characterizing the microstructure of AZT materials are demonstrated.


Al2O3, ZrO2, TiO2, thermal shock, EBSD, XCT, microstructure


[1] Li, Y.W., Li, N., Aneziris, C.G., Hampel, M.: Physical and mechanical properties of environmental friendly carbon-bonded Al2O3-C refractories for sliding gate applications. cfi/Ber.DKG 82 (2005) 9, pp. E55-E59

[2] Hasselman, D.P.H.: Unified theory of thermal shock fracture initiation and crack propagation in brittle ceramics. J. Amer. Ceram. Soc. 52 (1969) 600–604

[3] Hasselman, D.P.H.: Stress resistance parameters for Brittle refractory ceramics: a compendium. Amer. Ceram. Soc. Bull. 49 (1970) 1033–1037

[4] Aneziris, C.G.; Pfaff, E.; Maier, H.R.: Ceramic materials in the system ZrO2-TiO2-Al2O3 for applications in the ferrous and non ferrous metallurgy, Key Engin. Mater. Vol. 136 (1997) 1829–1833

[5] ACerS-NIST Phase Equilibria Diagram. CD-ROM Database Version 3.2, ACerS-NIST, 2008

[6] Troitzsch, U.; Ellis, D.J.: The ZrO2-TiO2 phase diagram. J. of Mater. Sci. (2005) 7

[7] Wang, C.L.; et al.: The microstructure and microwave dielectric properties of zirconium titanate ceramics in the solid solution system ZrTiO4-Zr5Ti7O24. J. of Mater. Sci. 32 (1997) 1693–1701

[8] Kim, H.C.; et al.: Crack healing, reopening and thermal expansion behavior of Al2TiO5 ceramics at high temperature. J. Eur. Ceram. Soc. 27 (2007) 1431–1434

[9] Virro-Nic, P.; Pilling, J.: Thermal expansion and microstructures of melted Al2O3-ZrO2-TiO2 ceramics. J. of Mater. Sci. Letters 13 (1994) 950–954

[10] Aneziris, C.G.; Schärfl, W.; Ullrich, B.: Microstructure evaluation of Al2O3 ceramics with Mg-PSZ and TiO2-additions. J. Eur. Ceram. Soc. 27 (2007) 2191–3199

[11] Aneziris, C.G.; et al.: Thermal shock performance of fine grained Al2O3-ceramics with TiO2- and ZrO2-additions for refractory applications. Advanced Engin. Mater. 12 (2010) 478–485

[12] Baruchel, J.; et al.: X-ray tomography in material science. Paris 2000

[13] Landis, E.N.; Keane, D.T.: X-ray microtomography. Materials Characterization Vol. 61 (2010) 1305–1316

[14] Salvo, L.; et al.: X-ray micro-tomography an attractive characterisation technique in materials science. Nuclear instruments and methods in physics research. Vol. B200 (2003) 273–286

[15] Schwartz, A.J.; Kumar, M.; Adams, B.L.: Electron backscatter diffraction in materials science. New York 2000

[16] Humphreys, F.J.; et al.: Electron backscatter diffraction of grain and subgrain structures ± resolution considerations. J. of Microscopy Vol. 195 (1999) 5

[17] ICDD: ICDD PDF-2 database release 2008. International Centre for Diffraction Data (ICDD) 2008.


Göller Verlag GmbH