Process and Materials Development for Functionalized Printing in Three Dimensions (FP-3D)
Hochschule Bonn-Rhein-Sieg, 53359 Rheinbach
Revision 11.10.2011, 24.10.2011
Volume 4, Issue 1, Pages 151 - 158
Abstract
The paper presents the development pathway for the generation of ceramic parts with locally changed materials compositions. Focussing on the issues of ink preparation and characterization, the local doping of ceramic powder through printing in former publications hence establishing valuable building blocks in process development, this paper focusses on particle filled ink printing and powder selection for the process. The Ohnesorge number is confirmed as a good indicator for ink printability, but final printing settings also have to be verified by direct observation of the drop formation process before fabrication. Powder investigations revealed that particle packing models for coarse powders are not valid for fine powders used here and desired for the process. But without embedding the process into powder analysis, final conclusions do not seem possible. Hence, the development of suitable methods for this particular question is the focus of present and future research.
Keywords
3D-printing, alumina, generative manufacturing
References
[1] Joliff, Y.; Absi, J.; Glandus, J. C.; Huger, M.; Tessier- Doyen, N.: Experimental and numerical study of the thermomechanical behaviour of refractory model materials. Journal of the European Ceramic Society 27 (2007) [2-3]. 1513–1520.
2] Aneziris, C. G.; Geigenmüller, A.: Feuerfest und schadstoffarm. forschung - Mitteilungen der DFG 35 (2010) [S1]. 10–15.
3] Kollenberg, W.: Keramische Komponenten mit variablem Mikrogefügedesign. (2010) DE 10 2008 028 742 B4 17.06.2008.
4] Polsakiewicz, D.; Kollenberg, W.: Generativ hergestellte keramische Bauteile mit dreidimensional funktional-gradierten Strukturen. DKG-Jahrestagung. 22.-24.3-2010. Hermsdorf.
5] Polsakiewicz, D.; Kollenberg, W.: Improvement of thermo shock performance by three dimensional graded structures. Proceedings of the 54th International Conference on Refractories 2011 in Aachen.
6] Polsakiewicz, D. A.; Kollenberg, W.: Highly loaded alumina inks for use in a piezoelectric print head. Mat.-wiss. u. Werkstofftech 42 (2011) [9]. 812– 819.
7] Utela, B.; Storti, D.; Anderson, R.; Ganter, M.: A review of process development steps for new material systems in three dimensional printing (3DP). Journal of Manufacturing Processes 10 (2008) [2]. 96– 104.
8] Sachs, E.; Wylonis, E.; Allen, S.; Cima, M.; Guo, H.: Production of injection molding tooling with conformal cooling channels using the three dimensional printing process. Polym Eng Sci 40 (2000) [5]. 1232–1247.
9] Yang, S.; Evans, J. R. G.: Metering and dispensing of powder; the quest for new solid freeforming techniques. Powder Technology 178 (2007) [1]. 56–72.
10] Calvert, P.: Inkjet Printing for Materials and Devices. Chem. Mater. 13 (2001) [10]. 3299–3305.
11] Mott, M.; Song, J.-H.; Evans, J. R. G.: Microengineering of Ceramics by Direct Ink-Jet Printing. Journal of the American Ceramic Society 271 (1999) [7]. 1653–1658.
12] Zhao, X.; Evans, J. R. G.; Edirisinghe, M. J.; Song, J. H.: Ink-jet printing of ceramic pillar arrays. Journal of Materials Science 37 (2002) [10]. 1987–1992.
13] Ramakrishnan, N.; Rajesh, P. K.; Ponnambalam, P.; Prakasan, K.: Studies on preparation of ceramic inks and simulation of drop formation and spread in direct ceramic inkjet printing. Journal of Materials Processing Technology 169 (2005) [3]. 372–381.
14] Özkol, E.; Ebert, J.; Telle, R.: An experimental analysis of the influence of the ink properties on the drop formation for direct thermal inkjet printing of high solid content aqueous 3Y-TZP suspensions. Journal of the European Ceramic Society 30 (2010) [7]. 1669–1678.
15] Jang, D.; Kim, D.; Moon, J.: Influence of Fluid Physical Properties on Ink-Jet Printability. Langmuir 25 (2009) [5]. 2629–2635.
16] Reis, N.; Ainsley, C.; Derby, B.: Ink-jet delivery of particle suspensions by piezoelectric droplet ejectors. Journal of Applied Physics 97 (2005) [9]. 94903.
17] Dong, H.; Carr, W. W.; Morris, J. F.: An experimental study of drop-on-demand drop formation. Physics of Fluids 18 (2006) [7]. 72102.
18] Dong, H.; Carr, W. W.; Morris, J. F.: Visualization of drop-on-demand inkjet: Drop formation and deposition. Review of Scientific Instruments 77 (2006)
8]. 85101.
19] Xu, Q.; Basaran, O. A.: Computational analysis of drop-on-demand drop formation. Physics of Fluids 19 (2007) [10]. 102111.
20] Furnas, C. C.: Grading Aggregates - I. - Mathematical Relations for Beds of Broken Solids of Maximum Density. Ind. Eng. Chem 23 (1931) [9]. 1052–1058.
21] Andreasen, A.: Über die Beziehung zwischen Kornabstufung und Zwischenraum in Produkten aus losen Körnern (mit einigen Experimenten). Colloid & Polymer Science 50 (1930) 217–228.
22] Yu, A. B.; Bridgwater, J.; Burbidge, A.: On the modelling of the packing of fine particles. Powder Technology 92 (1997) [3]. 185–194.
23] Moon, J.; Grau, J. E.; Knezevic, V.; Cima, M. J.; Sachs, E. M.: Ink-Jet Printing of Binders for Ceramic Components. Journal of the American Ceramic Society 85 (2002) [4]. 755–762.
Copyright
Göller Verlag GmbH