Evaluation of Phase Diagrams with Regard to Alkali Resistance of Calcium Aluminates at High Temperatures

Christos G. Aneziris1, Tobias Hölscher2, Ernst Schlegel3

1 TU Bergakademie Freiberg, Institut für Keramik, Glas- und Baustofftechnik, 09596 Freiberg/Germany
2 Calsitherm Silikatbaustoffe GmbH, 33175 Bad Lippspringe/Germany
3 TU Bergakademie Freiberg, Institut für Keramik, Glas- und Baustofftechnik, 09596 Freiberg/Germany

Revision 02.11.2012, 07.11.2012

Volume 5, Issue 1, Pages 113 - 117

Abstract

The paper is a critical view on calcium aluminates concerning their thermal stability and possibility of reaction with alkalis in regard to the evaluation of phase diagrams in subsolidus field but at temperatures of 1100 °C to 1200 °C. In this solid state the volume changes followed by density changes from original to the formatting compounds due to the alkali corrosion. The main topic is the calculation of type and amount of the formatting alkali compounds and the volume change of the solid phase mixture in each of the five calcium aluminates herein. Due to the CA6 reaction with alkalis to β-alumina the linear expansion is about 14 % and the solid phase is destroyed as well. The other four calcium aluminates have linear expansion of maximal 2,6 % or shrinkage of maximal 3,7 % respectively. Therefore one can expect an alkali stability of these four calcium aluminates somewhat. In the CaO-Al2O3 system the lowest eutectic melts at 1435 °C between C3A and C12A7. So the densification by sintering can start nearly 200 to 300 K below the temperature of the first melt. Therefore porous calcium aluminate thermal insulating materials have a possible service temperature of 1100 to 1200 °C.  

Keywords

calcium aluminates, alkali, corrosion,calculation of volume changes, high temperature thermal insulation

References

[1] Company Profiles: KERNEOS – Calcium aluminate energy to fuel refractory performance. refractories WORLDFORUM 1 (2009) [1] 26–29

[2] Hinz, W.: Silikate. Berlin 1963

[3] Petzold, A.; Ulbricht, J.: Feuerbeton. Leipzig, Stuttgart 1994

[4] Seifert, H.; Schlegel, E.; Sonntag, F.: Hochtemperaturreaktionen tonerdehaltiger Feuerbetone. Silikattechnik 26 (1976) [8] 269–270

[5] Schlegel, E.: Die Bildung von Calciumdialuminat CA2 durch Festkörperreaktion. In: Hochschule für Architektur und Bauwesen Weimar, 5. Int. Baustoff- und Silikattagung Weimar, 17.–23. Sept. 1973, Proc. section 2, part 2; 1973, 451–462

[6] Boldt, R.: Der Wärmetransport in hochporösen Werkstoffen auf der Basis von Wollastonit, Hibonit und Mullit. Dissertation Bergakademie Freiberg 1985

[7] Seifert, H.; Schlegel, E.: Hydrothermale Härtung zur Herstellung ungebrannter, hitzebeständiger und feuerfester Baustoffe. Silikattechnik 36 (1985) [7] 209–210

[8] Schlegel, E.; Seifert, H.: Verfahren zur Herstellung eines Ofenleichtbaustoffs. DD PS 206 142, AZ: WP C 04 B/ 2412 287, 30.06.1982

[9] Schlegel, E.; Seifert, H.: Verfahren zur Herstellung keramischer und feuerfester Werkstoffe. DD PS 206 145, AZ: C 04 B/ 2412 270, 30.06.1982

[10] Schlegel, E.; Seifert, H.; Weißbach, H.: Feuerfeste und keramische Werkstoffe. DD PS 206 146, AZ: WP C 04 B/ 2412 262, 30.06.1982

[11] Criado, E.; De Anza, S.: Calcium hexaaluminate as refractory material. UNITECR’91, Aachen/ Germany, Proc. 403–407

[12] Van Garsel, D. et al.: New insulating raw material for high temperature applications. 41th Int. Coll. on Refractories Aachen, 29./30. Sep 1998, Düsseldorf 1998, 122–128

[13] Schlegel, E.; Schaarschmidt, G.: Mikroporöse Wärmedämmstoffe auf der Basis von Calciumsilicaten und -aluminaten. Die Feuerfest - keramik (1990) [2] 18–20

[14] Petzold, A.: Anorganisch-nichtmetallische Werkstoffe. Charakteristik, Eigenschaften, Anwendungsverhalten. 3rd ed., Leipzig 1992

[15] Kockegey-Lorenz, R.; Buhr, A.; Racher, A.P.: Industrial application experiences with microporous calcium hexa-aluminate insulating material SLA-92. 48th Int. Coll. on Refractories, Aachen/ Germany; 8./9. Sept. 2005, Düsseldorf 2005, 66–70

[16] Hölscher, T. et al.: CALUTHERM® – A hydrothermal cured thermal insulation material based on hibonite for temperatures up to 1600 °C. Interceram 57 (2008) [5] 330–334

[17] Roth, R.S.: ACerS-NIST Phase equilibria diagrams, Vol. XIII. Westerville/Ohio 2001

[18] Nurse, R.W.; Welch, J.H.; Majumdar, A.J.: The 12CaO·7Al2O3 phase in the CaO–Al2O3 system. Trans. Brit. Ceram. Soc. 64 (1965) [9] 323–332

[19] Buhr, A.; et al.: Bonite – A new raw material alternative for refractory innovations. 47th Int. Coll. on Refractories, Aachen/Germany 13./14. Oct. 2004; Düsseldorf 2004, 205–210

[20] Levin, E.M.; Robbins, C.R.; McMurdie, H.F.: Phase diagrams for ceramists. Columbus/Ohio 1964

[21] Roth, R.S.: Phase equilibrium diagrams for ceramists, Vol. XI. Westerville/Ohio 1995

[22] Verweij, H.; Saris, C.M.P.M.: Phase formation in the system Na2O·Al2O3–CaO·Al2O3–Al2O3 at 1200 °C in air. J. Amer. Ceram. Soc. 69 (1986)

[2] 94–98

[23] Schlegel, E.: Evaluation of phase diagrams with regard to the alkali corrosion of Refractories. Proc. XVIth Int. Conf. on Refractories Prague/ Czech Republic, 14./15. May 2008, Praha 2008, 23–30

[24] Schlegel, E.: Auswertung von Phasendiagrammen hinsichtlich der Alkalikorrosionsbeständigkeit feuerfester Baustoffe. Keram. Z. 61 (2009)

[2–3] 94–97 and [5] 266–271

[25] Boymanns, G.; Gebhardt, F.; Schilling, M.: Tin bath bottom blocks – a comparison of refractories of the systems SiO2–Al2O3 and CaO– Al2O3. refractories WORLDFORUM 1 (2009) [1] 77–80

[26] Schlegel, E.; Aneziris, C.G.; Fischer, U.: Alkali corrosion of refractory installations in cement kilns – comparison of theory, laboratory tests and practice. Proc. 52th Int. Coll. on Refractories, Aachen/ Germany, 23/24. Sept. 2009, Bonn 2009

 

Copyright

Göller Verlag GmbH