Aspects of Elastification Reactions in Basic Cement Kiln Bricks

Hans-Jürgen Klischat, Johannes Södje, Stefan Uhlendorf

Refratechnik Cement GmbH, 37079 Göttingen/Germany

Revision

Volume 5, Issue 4, Pages 53 - 62

Abstract

To increase the flexibility and elasticity of a basic refractory brick system, beneath the resistor MgO a second component is necessary, the so-called elastifier. Spinel minerals have proven to be an economically and technically suitable elastifier material. The behaviour of spinel minerals in the magnesia system are highlighted and focussed in this paper, as other (like zirconia) are of less importance nowadays. The behaviour of the crucial spinel types can be subdivided into three groups regarding their reaction potential with the basic brick material, the resistor MgO. The selection of the appropriate elastifier from the spinel group, its content and specific performance influences the properties and behaviour as well as the resistivity of the basic brick systems

Keywords

chromite-free brick, magnesia, spinel mineral, cement rotary kiln

References

[1] Hotz, G.; Bartha, P.: Stand der feuerfesten Zustellung von Drehofenanlagen. ZKG Int. 28 (1975) [6] 236–240 [2] Münchberg, W.; De Jong, J.G.M.: Verhalten von keramisch gebundenen Dolomitsteinen in Zementdrehrohröfen bei Infiltrationen von Ofengasen. Ber. DKG 52 (1975) [5] 108–117 [3] Uchikawa, H.; et al.: Application of periclasespinel bricks to cement rotary kiln in Japan. Interceram, Special Issue on Refractories 33 (1984) 40–43 [4] Bartha, P.: The properties of periclase spinel brick and its service stresses in rotary cement kilns. Interceram, Special Issue on Refractories 33 (1984) 15–17 [5] Klischat H.-J.; Tabbert, W.: Magnesia spinel bricks for the cement industry. Proc. 2nd Int. Symposium Refractories, Beijing, China, 1992, 424–430 [6] Bartha, P.; Klischat, H.-J.: Klassifikation von Magnesia-Steinen nach Spezifikation und Gebrauchswert im Zementdrehofen. ZKG Int. 47 (1994) [8] 474–478; Classification of magnesia bricks in rotary cement kilns according to specification and serviceability. ZKG Int. 47 (1994) [10] E277–E280 [7] Klischat, H.-J.; Weibel, G.; Bartha, P.: Entwi - cklungsstand chromerzfreier Magnesiasteinsorten für die Zementindustrie. ZKG Int. 50 (1997) [8] 418–428 [8] Buchebner, G.; Harmuth, H.; Molinari, Th.: Mag nesia hercynite bricks, an innovative burnt basic refractory. Proc. UNITECR’ 99, 6th Bien nial Worldwide Congress, Berlin 1999, 201–203 [9] Klischat, H.-J.; Wirsing, H.: Development of chrome spinel-free structural flexibility systems for basic bricks. REFRA Kolloquium 2000, Berlin, Refratechnik Cement GmbH, Göttingen, 41–58 [10] Södje, J.; Wirsing, H.: Structural reinforced basic refractory bricks for the use in alkali load ed cement rotary kilns. REFRA Kolloquium 2004, Berlin, Refratechnik Cement GmbH, Göttingen, 49–56 [11] Klischat, H.-J.: Meeting specific cement kiln challenges by basic brick development. REFRA Kolloquium 2008, Berlin, Refratechnik Cement GmbH, Göttingen, 75–88 [12] Klischat, H.-J.; Vellmer, C.; Wirsing, H.: Smart refractory solution for stress loaded rotary kilns. ZKG Int. 66 (2013) [5] 54–60 [13] Klischat, H.-J.; Wirsing, H.: Practical application of mineralogical variations for advanced rotary kiln refractories. Proc. UNITECR’09, 11th Biennial Worldwide Congress, Salvador 2009, paper 171 [14] Strunz, H.; Nickel, E.H.: Mineralogical tables, chemical-structural mineral classification sys - tem. 9th ed. Stuttgart 2001 [15] Routschka, G. (ed.): Handbook of Refractory Materials. 4th ed. Essen 2012, 86–89 [16] Routschka, G. (ed.): Handbook of Refractory Materials. 4th ed. Essen 2012, 106 [17] Klischat, H.-J.; Weibel, G.: Magnesia-spinel bricks with differentiated properties for the sintering and transition zones of rotary cement kilns. Further developments. REFRA Kolloquium 1993, Munich, REFRATECHNIK GmbH, Göttingen, 30–56 [18] European Patent EP 1247784: Synthetic refractory material for refractory products and process for manufacturing the product [19] Geith, M.; Majcenovic, C.; Buchebner, G.: Ac - tive spinels – an innovative additive to basic cement rotary kiln bricks. Proc. 46th Int. Coll. Refractories, Aachen, Nov. 2003, 57–60 [20] Hering, W.: Über die Diffusion im Dreistoffsystem MgO-Fe2O3-Cr2O3. Dissertation Erlangen 1970 [21] Ichikawa, K.; Iwado, H.; Hisamoto, T.: Reaction between chrome spinel and fused magnesia. Taikabutsu Overseas 12 (1992) [3] 36–38 [22] Tagai, H.; et al.: Die Diffusion von Eisen-, Mangan- und Chromoxiden in Magnesia-Einkristallen. Radex-Rundschau (1965) [4] 577–583 [23] Bouvier, G.; Barthel, H.: Wechselwirkungen von Sintermagnesit und Chromerz in Abhängigkeit von der Temperatur. Ber. DKG 46 (1969) [7] 357–365 [24] Naefe, H.: Stofftransport über die Gasphase beim Brennen von Magnesiachromitsteinen. Dissertation, TU Clausthal, 1975 [25] Trojer, F.: Einige mikroskopische Beobachtungen über das Verhalten von Chromit in feuerfesten Chrommagnesitsteinen. Radex-Rundschau (1958) [3] 123–130 [26] Vornehm, M.; Zednicek, W.: Hochtemperaturmikroskopische Studien als Beitrag zur Klärung der Wechselwirkung Chromit-Periklas. Radex- Rundschau (1980) [3] 197–222 [27] Uhlendorf, S: Charakterisierung des Reaktionsverhaltens verschiedener Chromerze in einer MgO-Matrix bei oxidierenden Bedingungen. Bachelor thesis, Universität Göttingen, Göttingen 2006 [28] Jörg, S.; Krischanitz, R.: Ankral XE – first in service results of the new magnesia galaxite brick. RHI Bull. (2006) [3] 7–10 [29] Bartha, P.; Södje, J.: Degradation of refractories in cement rotary kilns fired with waste fuels. CN Refractories 5 (2001) 62–71 [30] O’Driscoll, M.: Spinel’s spring. Ind. Min. (2011) [8] [31] Bartha, P.; Klischat, H.-J.: Progress in perform - ance behaviour of basic bricks by innovative raw material selection. Proc. UNITECR’01, 7th Biennial Worldwide Congress, Cancún 2001, 631–642.

Copyright

Göller Verlag GmbH