Lowering of the Refractory Corrosion in High-temperature Processes
Technical University of Mining and Technology Freiberg (TUBAF), Institute of Ceramic, Glass and Construction Materials (IKGB), TU Bergakademie Freiberg, 09599 Freiberg/Germany
Revision
Volume 6, Issue 4, Pages 73 - 75
Abstract
Corrosion of refractories is a problem in any kind of high-temperature process. Since 2008, a new technology for reducing refractory corrosion has been developed at TU Bergakademie Freiberg/DE. With this surfacetreatment technology, wear of refractories has been reduced by up to 90 %. In a range of laboratory tests with different kinds of refractory and melt (e.g. finger tests, crucible tests), the effects of the technology were observed. The reason for the reduced interaction between the refractory material and melt was the change in the surface tension and viscosity of the melt in the boundary layer via treatment of the bricks. The different treatments can be used on every kind of porous refractory brick, regardless of manufacturer. After using the surface treatment technology for porous refractories, the bricks show the same corrosion behavior as fused cast bricks. After a range of industrial tests, the results at laboratory scale were confirmed, resulting in considerable savings for operators of high-temperature plants.
Keywords
refractory corrosion, glass melt, finger test, surface treatment technology
References
[1] Coupland, D.R.; McGrath, R.B.; Evens, J.M.: Progress in platinum group metal coating technology, ACTTM. Platinum Metals Rev. 39 (1995) [3] 98–107 [2] Fischer, B.: Reduction of platinum corrosion in molten glass. Platinum Metals Rev. 36 (1992) [1] 14–25 [3] Hessenkemper, H.; Weigand, R.: Produktivitätserhöhung in der Glasindustrie durch Veredelung von Feuerfestmaterial. Keram. Z. 62 (2010) [6] 411–414 [4] Weigand, R.; Hessenkemper, H.; Tritschel, D.: Ways to reduce the interaction between glass melt and refractory. refractories WORLDFORUM 3 (2011) [2] 69–72 [5] Weigand, R.; et al.: Potential for savings in the container glass industry. Refractories Manual (2012) [1] 28–32 [6] DIN ISO 7884-1: Glas – Viskosität und viskosimetrische Festpunkte. Deutsches Institut für Normung e.V., Berlin 1998 [7] Brückner, R.; et al.: Sättigungskonzentration an der Phasengrenze feuerfester Materialien und Hohlglasschmelze. Glastechnische Berichte 57 (1984) [5] 112–120 [8] Löffler, J.: Physikalische und chemische Reaktionen, die in Glaswannen zur Ausbildung von Spülfugen oder zum Lochfraß führen. Glastechnische Berichte 38 (1965) [10] 398–405 [9] Trier, W.: Glasschmelzöfen – Konstruktion und Betriebsverhalten. Berlin 1984 [10] Kucuk, A.; Clare, A.G.; Jones, L.: An estimation of the surface tension for silicate glass melts at 1400 °C using statistical analysis. Glass Technology. Europ. J. of Glass Sci. and Techn. Part A 40 (1999) [5] 149–153 [11] Guloyan, Y.A.; Pustyl´nikov, O.M.: Diffusion kinetics in the reaction of corundum refractories with a glass melt. Glass and Ceramics 63 (2006) [9/10] 346–350
Copyright
Göller Verlag GmbH