New Sidewall Materials in Aluminum Reduction Cell
The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, 430081Wuhan/China
Revision 20.04.2014, 18.06.2014
Volume 6, Issue 4, Pages 101 - 106
Abstract
Nowadays the heat dissipating has to be reduced as far as possible in new electrolysis technology in order to meet the needs of energy saving in aluminum industry. Ledge-free sidewall is preferred as it potentially reduces the energy requirement of aluminum production and allows the use of larger anode that increase capacity and productivity of a cell of the same dimensions. Also the environmental impacts would be reduced significantly in combination with inert anodes and cathode application. However, the sidewalls are facing the extreme challenge because they will be in direct contact with oxidizing, corrosive and reducing environments for different zones in aluminum cell. This article gives an overview of the current status and latest progress of such ledge-free sidewall materials. Also, an attempt to develop novel composite materials based on MgO–NiFe2O4–TiO2 and MgO–SnO2–TiO2 system for ledge-free sidewall have been made in our laboratory. Finally, some advices on the development of the ledge-free sidewall materials in future are proposed.
Keywords
sidewalls; NiFe2O4; SnO2; composite spinel; electrolyte corrosion resistance, aluminum industry
References
[1] Grjotheim, K.; et al.: Aluminum smelter technology. Dusseldorf 1980 [2] Sonntag, A.; et al.: New R-SiC extends service life in kiln furniture. Amer. Ceram. Soc. Bull. 76 (1997) 51–54 [3] Wang, Z.; et al.: Spent Si3N4 bonded SiC sidelining materials in aluminum electrolysis cells. Light Metals (2009) 353–358 [4] Etzion, R.; et al.: Wear mechanism study of silicon nitride bonded silicon carbide refractory materials. Light Metals (2008) 955–958 [5] Thonstad, J.; et al.: Aluminum electrolysis. 3rd ed. Fundamentals of the Hall-Heroult process. Dusseldorf 2001 [6] Choate, W.T.; et al.: U.S. energy requirements for aluminum production: Historical perspective, theoretical limits and new opportunities. Energy efficiency and renewable energy. Washington, D.C., 2003 [7] Grjotheim, K.; et al.: Aluminum smelter technology. 2nd ed., Dusseldorf 1988 [8] Brooks, G.; et al.: Challenges in light metals production. Mineral Processing and Extractive Metallurgy 116 (2007) [1] 25–33 [9] Mukhlis, R.; et al.: Sidewall materials for Hall-Heroult process. Light Metals (2010) 883–888 [10] Yan, X.Y.; et al.: Aluminate spinels as sidewall linings for aluminum smelters. Light Metals. (2011) 1085–1090 [11] Nightingale, S.A.; et al.: Corrosion of nickel ferrite refractory by Na3AlF6–AlF3–CaF2–Al2O3 bath. J. Europ. Ceram. Soc. 33 (2013) 2761–2765 [12] Skybakmoen, E.; et al.: Chemical resistance of sidelining materials based on SiC and carbon in cryolitic melts – a laboratory study. Warrendale, PA (1999) 215–22. [13] Mukhlis, R.Z.; et al.: Sidewall materials for Hall-Heroult process. High Temperature Processing, Swinburne University of Technology, Melbourne (2010) 63–66 [14] Kvande, H.; et al.: Inert anodes for Al smelters: Energy balances and environmental impact. JOM 53 (2001) [5] 29–33 [15] Welch, B.J.; et al.: Materials problem in Hall-Heroult cells. 8th Int. Leichtmetalltag, Leoben – Vienna (1987) 120–125 [16] Sadoway, D.R.: Inert anodes for the Hall-Heroult cell: the ultimate materials challenge. JOM 53 (2001) [5] 34–35 [17] Pownceby, M.I.: Literature review – materials for the sidewalls of Hall-Heroult cells. CSIRO Minerals, Clayton 2005 [18] Xu, Y.B.; et al.: Reaction between oxides and fluoride electrolyte at high temperature. Mat. Rev. 26 (2012) 106–111 [19] Pawlek, R.P.: Methods to test refractories against bath attack in aluminum electrolysis pots. Aluminum 70 (1994) 555–559 [20] Gao, B.L.; et al.: Corrosion tests and electrical resistivity measurement of SiC–Si3N4 refractory materials. Light Metals (2004) 419–424 [21] Zhao, J.G.; et al.: Test method for resistance of SiC material to cryolite. Light Metals (2006) 663–666 [22] Downie, K.: NiFe2O4 as a sidewall material in Hall-Heroult cells. Bachelor of Engineering Thesis, University of Wollongong, Wollongong, 2007 [23] Galasiu, I.; et al.: Inert anodes for aluminum electrolysis. Dusseldorf 2009 [24] Yan, X.Y.; et al.: Corrosion behaviour of nickel ferrite-based ceramics for aluminium electrolysis cells. Light Metals (2007) 909–913 [25] Sekhar, J.A.; et al.: Reduction conditions encountered in cryolite baths. Light Metals (1999) 383–387 [26] Olsen, E.; et al.: Nickel ferrite as inert anodes in aluminum electrolysis: Part I: Material fabrication and preliminary testing. J. Appl. Electrochem. 29 (1999) [3] 293−299 [27] Liu, B.; et al.: Electrical conductivity and molten salt corrosion behavior of spinel nickel ferrite. Solid State Sci. 13 (2011) [8] 1483–1487 [28] Bale, C.W.; et al.: FactSage thermochemical software and databases. Calphad 26 (2002) 189–228 [29] Xiao, H.; et al.: The solubility of SnO2 in NaFAlF 3-Al2O3 melts. Acta Chem. Scand. 49 (1995) 96–102 [30] Xiao, H.; et al.: Studies on the corrosion and the behavior of inert anodes in aluminum electrolysis. Metall. Mater. Trans. B. 27 (1996) [2] 185–193 [31] Liu, Y.X.; et al.: Oxygen overvoltage on SnO2-based anodes in NaF–AIF3–Al2O3 melts, electrocell catalytic effects of doping agents. Electrochim. Acta 28 (1983) [1] 113–116 [32] Keller, R.; et al.: Mass transport considerations for the development of oxygen-evolving anodes in aluminum electrolysis. Electrochim. Acta 42 (1997) [12] 1809–1817 [33] Zuca, S.; et al.: Contribution to the study of SnO2-based ceramics. J. Mat. Sci. 26 (1991) [6] 1673–1676 [34] Govorov, V.A.; et al.: Sn2–2xSbxFexO4 Solid solutions as possible inert anode materials in aluminum electrolysis. Chem. Mat. 17 (2005) [11] 3004–3011 [35] Popescu, A.M.; et al.: Microstructure and electrochemical behaviour of some SnO2-based inert electrodes in aluminum electrolysis. J. Phys. Chem. 57 (2002) 71–75 [36] Vecchio-Sadus, A.M.; et al.: Tin dioxide-based ceramics as inert anodes for aluminium smelting: a laboratory study. Light Metals (1996) 259–265 [37] Popescu, A.M.; et al.: Structure and behaviour of ceramic materials based on SnO2 used as inert anodes in electrowining processes. Rev. Roum. Chim. 55 (2010) [5] 319–328 [38] Jentoftsen, T.E.; et al.: Solubility of some transition metal oxides in cryolite-alumina melts: Part I. Solubility of FeO, FeAl2O4, NiO, and NiAl2O4. Metall. Mater. Trans. B. 3 (2002) 901–908 [39] Granfield, J.; et al.: The impact of rising Ni and Vimpurity levels in smelter grade aluminum and potential control strategies. Mater. Sci. Forum 630 (2010) 129–136 [40] Othman, A.G.M.: Effect of talc and bauxite on sintering, microstructure, and refractory properties of Egyptian dolomitic magnesite. Br. Ceram. Trans. 102 (2003) [6] 265–271 [41] Liu, Y.X.; et al.: Modern aluminum electrolysis. Beijing 2008 [42] Lee, Y.B.; et al.: Sintering and microstructure development in the system MgO-TiO2. J. Mater. Sci. 33 (1998) [17] 4321–4325 [43] Li, J.; et al.: Effect of NiO content on corrosion behaviour of Ni–xNiO–NiFe2O4 cermets in Na3AlF6–Al2O3 melts. T. Nonferr. Metal. Soc. 14 (2004) [6] 421–425 [44] Liu, J.Y.; et al.: Phase evolution of 17(Cu-10Ni)-(NiFe2O4–10NiO) cermet inert anode during aluminum electrolysis. T. Nonferr. Metal. Soc. 21 (2011) [3] 566–572 [45] Azad, A.M.: Mg2SnO4 ceramics I. Synthesis- processing-microstructure correlation. Ceram. Int. 27 (2001) 325–334
Copyright
Göller Verlag GmbH