A Review of Bond Systems for Monolithic Castable Refractories
Kerneos SA, 92521 Neuilly-sur-Seine/France
Revision
Volume 7, Issue 2, Pages 63 - 72
Abstract
A plethora of bonding systems has been developed for monolithic refractories either as proprietary systems or commercial products. This paper will provide a state of the art review of the different bond systems via an extensive literature review. A comparison of different bond systems for alumina-based monolithic castables will be given showing the different comparative characteristics for each system and their advantages as well as the trade off and constraints will be discussed.
Keywords
monolithic castable refractories, bond systems
References
[1] Lee, W.E.; Moore, R.E.: Evolution of in situ refractories in the 20th century. J. Amer. Ceram. Soc. 81 (1998) [6] 1385–1410 [2] Deville, H.S-C.: On the compositions of different alloys. Ann. Phys. Chim. 46 (1856) [3] [3] Soc. J&A. Pavin de Lafarge, French patent applications 320290, 391454, 1908 [4] Robson, T.D.: Refractory concretes: Past, present, and future. Refractory Concrete (Amer. Concrete Institute, Detroit, 1978) 1–10 [5] Arnould, J.: Un ciment hydraulique réfractaire. Chimie et Industrie 15 (1922) [2] [6] Refractory concretes based upon Secar® 250 and Fondu® Lafarge. Brochure S.E.C.A.R, 1969 [7] Kingery, W.: Fundamental study of phosphate bonding in refractories: I-Literature review, II cold setting properties; III phosphate adsorption by clay and bond migration. J. Amer. Ceram. Soc. 33 (1950) [8] 239–250 [8] Gitzen, W.J.; Hart, L.D.; MacZura, G.: Phosphate bonded alumina castables some properties and applications. J. Amer. Ceram. Soc. 35 (1956) [6] [9] Prost, L.; Pauilliac, A.: French patent application No. 6934405, 1969 [10] Hongo, Y.: p-Alumina bonded castable refractories. Taikabutsu 9 (1989) [1] [11] Lee, W.; et al.: Castable refractory concretes. Int. Mater. Rev. 46 (2001) [3] 145–167 [12] Yorita, E.: Silicate bonding castable refractories. Taikabutsu 9 (1989) [1] 29-31 [13] Japanese patent laid open No. 55–167192 (1980) [14] Japanese patent laid open No. 58–55366 (1983) [15] Anderson, M.: Better refractories through nanotechnology. Ceramic Industry, October 2005 [16] Blajs, M.; von der Heyde, R.: Sol-bonded alumina monolithic – development & improvement. Irefcon 2014, Calcutta, India [17] Chesters, J.H.: Refractories: Production and properties. Inst. of Materials London, UK, 1973, reprinted 1983 [18] Krietz, L.P.; Fisher, R.E.; Beetz, J.G.: Evolution and status of refractory castable technology entering the 1990. Amer. Ceram. Soc. Bull. 69 (1990) [10] 1690–1693 [19] Fisher, K.: Chemical bonds for refractory materials. Br. Ceram. Trans. 74 (1975) 253 [20] Taikabutsu Overseas, DVD Archives from 1981 to 2010 produced by TARJ (Technical Association of Refractories Japan) [21] https://www.cas.org/products/scifinder [22] Parr, C.; Wöhrmeyer, Ch.: The advantages of calcium aluminate cement as a castable bonding system. Proc. of the Refractories Symposium. Amer. Ceram. Soc. St. Louis Section, St. Louis (2006) [23] George, C.M.: Aspects of calcium aluminate cement (CAC) hydration. Proc. of the Refractories Symposium. Amer. Ceram. Soc. St. Louis Section, St. Louis (1994) [24] Clavaud, B.; Kiehl, J.P.; Radal, J.P.: A new generation of low cement castables. New developments in monolithic refractories, advances in ceramics. Amer. Ceram. Soc. 1984 [25] Kiehl, J.P.; Jost, V.; Clavaud, B.A.: Low lime content hydraulic cements and concretes which contain them. US Patent 4111711, Sept. 5, 1978 (French Patent Application nos. 7622344 (1976) and 7714717 (1977) [26] Zhou, N.; Hu, S.; Zhang, S.: Advances in modern refractory castables. CN Refractories 13 (2004) [2] 24–26 [27] Nagai, B.: Recent advances in castable refractories in Japan. Taikabutsu Overseas 9 (1989) [1] 2–9 [28] Cassens Jr., N.; Steinke, R.A.; Videtto, R.B.: Shotcreting self-flow refractory castables. Proc. UNITECR’ 97 (New Orleans, USA, 1997) 531– 544 [29] Yamaura, T.; et al.: Shinagawa technical report 32 (1989) 101–111 [30] Azizan, F.: Improving the performance of cement free castables. Ceramic Industry (1997) February, 47–48 [31] Weiping, M.; Brown, P.W.: Mechanisms of reaction of hydratable alumina. J. Amer. Ceram. Soc. 82 (1999) [2] 453–456 [32] William Vance, M.; Moody, J.: Use of hydratable alumina binders in refractory compositions and related applications. Presented at the 97th Amer. Ceram. Soc. Ann. Meeting and Exposition, May 1, 1995 [33] Cardosa, F.A.; et al.: Drying behavior of hydratable alumina-bonded refractory castables. J. Europ. Ceram. Soc. 24 (2004) 797–802 [34] Myhre, B.; Sandberg, B.; Hundere, A.M.: Castables with MgO–SiO2–Al2O3 as bond phase. XXVI ALAFAR Congress Proc. 1997, 10
Copyright
Göller Verlag GmbH