Functionalized Systems for Monolithics and Prefabs

Christos G. Aneziris, Nora Gerlach

TU Bergakademie Freiberg, Institute of Ceramic, Glass and Construction Materials, 09596 Freiberg/Germany

Revision

Volume 7, Issue 3, Pages 49 - 58

Abstract

For decades industrially established refractory monolithics typically represent classically characterized, often hydraulically bonded material systems. Steadily rising technological requirements for pouringcapable refractory materials and their installation routines for the realization of advanced monolithic material installations open new action spaces and technical diversities within the scope of new material and procedure developments. Some well-selected examples are responded and discussed which are also indicated within the triangle between innovation, economic efficiency and competition. A central pivot are essential main features and design elements of purely oxide- based or high-alumina materials, e.g. [CaO–MgO–Al2O3], as well as castable systems derived by selected states of the binary phasesystem [SiO2–Al2O3] which allow to realize individual solutions for a huge number of high temperature applications in the last consequence. The application of alumosilica phases derived from the system silica-alumina is suited excellently to the functionalizing of carbonaceous high temperature ceramics fundamentally.

Keywords

monolithics, prefabs, functionalizing of refractories

References

[1] Köster, V.; et al.: Monolithische Pfannenzustellung als weiterer Beitrag zur umwelt- und kostenbewußten Stahlerzeugung bei den Badischen Stahlwerken. Proc. 35th Int. Coll. on Refractories Aachen, Aachen 1992, 101–108 [2] Bier, T.A.; et al.: An approach to formulate spinel forming castables. 42th Int. Coll. on Refractories Aachen, Aachen 1999, 19–21 [3] Wöhrmeyer, C.; et al.: New spinel containing calcium aluminate cement for corrosion resistant castables. Proc. of the UNITECR Kyoto 2011, 1–D–5 [4] Braulio, M.A.L.; et al.: Spinel-containing alumina- based refractory castables. Ceramics Int. 37 (2011) 1705–1724 [5] Schnabel, M.; et al.: Spinel: In situ versus preformed – clearing the myth. refractories WORLDFORUM 2 (2010) [2] 87–93 [6] Mukhopadhyay, S.; et al.: Effect of preformed and in situ spinels on microstructure and properties of a low cement refractory castable. Ceramics Int. 30 (2004) 369–380 [7] Zargar, H.R.; et al.: The influence of nano boehmite on spinel formation in the aluminamagnesia system at low temperature. J. of Ceramic Processing Res. 9 (2008) 46–51 [8] Yamamura, T.; et al.: Alumina-spinel castable refractories for steel teeming ladle. Taikabutsu Overseas 12 (1992) 21–27 [9] Ko, Y.-C.: Role of spinel composition in the slag resistance of Al2O3-spinel and Al2O3– MgO castables. Ceramics Int. 28 (2002) 805–810 [10] Parr, C.; et al.: The advantage of calcium aluminate cement containing castables for steel ladle applications. ALAFAR Antigua 2004 [11] Mori. J.; et al.: Material design of monolithic refractories for steel ladle. Amer. Ceram. Soc. Bull. 69 (1990) 1172–1176 [12] Gehre, P.; et al.: Improved spinel-containing refractory castables for slagging gasifiers. J. Europ. Ceram. Soc. 33 (2013) 1077–1086 [13] Cölle, D.; et al.: Cement-free spinel-based refractory materials. Refractories and Industrial Ceramics 46 (2005) [4] 256–259 [14] Taniguchi, T.; et al.: Development of castable refractories with powder aluminium addition for blast furnace thoughs and runners. Proc. XXVth Int. Coll. on Refractories Aachen, Aachen 1982, 523–547 [15] United States Patent Application 4,120,734. Monolithic Refractory Compositions, 1978 [16] Cölle, D.: Neue Impulse für rohstoffoptimierte Hochtemperaturwerkstoffe „Made in Germany“. In: Ressourceneffizienz. Der Innovationstreiber von morgen. In: Reihe “Mittelstand im Fokus“, vol. II., Eds. Voigt, I.; Zehrfeld, W.A., Frankfurt/M. 2013, 97–106 [17] Scharrer, K.: Refractories make innovations happen. cfi/Ber. DKG 89 (2012) [3] E 40

Copyright

Göller Verlag GmbH