New Techniques for the Determination of Refractory Material Properties at High Temperatures

Gerhard Seifert, Veronika Schmitt, Friedrich Raether

Fraunhofer Zentrum Hochtemperatur-Leichtbau HTL, 95448 Bayreuth/Germany


Volume 7, Issue 3, Pages 77 - 84


The expected service life of refractories is an important issue in almost any kind of high-temperature processes in industry. Fostered by the political regulations to improve energy efficiency and reduce CO2 emissions, research activities on refractories have been intensified recently. To enable reliable lifetime prognoses, theoretical modeling is as important as the availability of precise high-temperature data on the material behaviour against thermal shock and corrosive agents. In this work, two new thermo-optical measuring devices are introduced which provide extended capabilities for studies of thermal shock and thermal cycling behaviour of refractories and their degradation by corrosive gases or abrasive particle flow.


refractory service life, refractory corrosion, thermo-optical measuring devices


[1] Hasselman, D.P.H.: Thermal stress resistance parameters for brittle refractory ceramics – a compendium. Ceram. Bull. 49 (1970) 1033–1037 [2] Hasselman, D.P.H.: Thermal stress resistance of engineering ceramics. Mater. Sci Eng. 71 (1985) 251–264 [3] Brinkman, C.R.; Duffy, S.F.: Life prediction methodologies and data for ceramic materials. Eds. ASTM, Philadelphia 1994 [4] Bossuge, M.: Some numerical approaches of creep, thermal shock, damage and delayed failure of ceramics and refractories. Bull. Mater. Sci. 24 (2001) 97–100 [5] Boccaccini, D.N.; et al.: Service life prediction for refractory materials. J. Mater. Sci. 43 (2008) 4079–4090 [6] Boccaccini, D.N.; et al.: A lifetime prediction method based on cumulative flaw length theory. J. Europ. Ceram. Soc. 32 (2012) 1175–1186 [7] Boccaccini, D.N.; et al.: Microstructural investigations in cordierite-mullite refractories. Ceram. Int. 31 (2005) 417–432 [8] Damhof, F.; Brekelmans, W.A.M.; Geers, M.G.D.: Non-local modelling of cyclic thermal shock damage including parameter estimation. Eng. Fract. Mech. 78 (2011) 1846–1861 [9] Damhof, F.; Brekelmans, W.A.M.; Geers, M.G.D.: Predictive FEM simulation of thermal shock damage in the refractory lining of steelmaking installations. J. Mater. Proc. Tech. 211 (2011) 2091–2105 [10] Pilipenko, D.; Natanzon, Y.; Emmerich, H.: Multiscale modeling of thermoshock in aluminium oxide ceramics. refractories WORLDFORUM 4 (2012) [1] 169–175 [11] Henneberg, D.; Ricoeur, A.; Judt, P.: Multiscale modeling for the simulation of damage processes at refractory materials under thermal shock. Comp. Mater. Sci. 70 (2013) 187–195 [12] Pilipenko, D.; Natanzon, Y.; Emmerich, H.: Influence of temperature of bulk modulus on crack propagation velocity. J. Ceram. Sci. Tech. 5 (2014) 77–82 [13] Raether, F.; Springer, R.; Beyer, S.: Optical dilatometry for the control of microstructure development during sintering. Mater. Res. Innovations 4 (2001) 245–250 [14] Raether, F.: Current state of in situ measuring methods for the control of firing processes. J. Amer. Ceram. Soc. 92 (2009) S146–S152 [15] Fritsch, M.; Klemm, H.: The water vapour hot gas corrosion behaviour of oxide based ceramic materials in a combustion atmosphere. J. Europ. Ceramic Soc. 28 (2008) 2353–2358 [16] Raether, F.: EnerTHERM – a joint effort for energy and cost efficient heat treatments. cfi/Ber. DKG 92 (2015) E 37–40


Göller Verlag GmbH