Improved Thermal Shock Resistance of Magnesium Aluminate Spinel Ceramics by Aluminium Titanate Additions

Kirsten Moritz, Christos G. Aneziris

Technische Universität Bergakademie Freiberg, Institute of Ceramics, Glass and Construction Materials, 09596 Freiberg/Germany

Revision 10.12.2015, 14.01.2016

Volume 8, Issue 2, Pages 67 - 73

Abstract

The capability of aluminium titanate additions to improve the thermal shock resistance of alumina-rich magnesium aluminate spinel refractories was investigated. Raw material mixtures with different maximum particle sizes of 20 μm, 1 mm, or 3 mm were used. The strength and the dynamic Young’s modulus of the spinel ceramic at room temperature were decreased by aluminium titanate, whereas the resistance to thermal shock, tested by water quenching from 950 °C, was enhanced. The dynamic Young’s modulus of the Al2TiO5-containing samples exhibited a pronounced hysteresis as a function of temperature.

Keywords

magnesium aluminate spinel, aluminum titanate, thermal shock resistance, dynamic Young’s modulus

References

[1] Buhr, A.: Refractories for steel secondary metallurgy. CN refractories 6 (1999) 19–30 [2] Buhr, A.; Laurich, J. O.: Synthetic alumina raw materials – key elements for innovative refractories. MPT Int. 3 (2000) 62–73 [3] Bradley, M.; Hutton, D.: An overview of refractory raw materials – Part 1: Alumina. The refractories Engineer (2011) May 20–23 [4] Aneziris, C. G.; et al.: Thermal shock performance of fine grained Al2O3 ceramics with TiO2 and ZrO2 additions for refractory applications. Adv. Engin. Mater. 12 (2010) 478–485 [5] Dudczig, S.; et al.: Nano- and micrometre additions of SiO2, ZrO2 and TiO2 in fine grained alumina refractory ceramics for improved thermal shock performance. Ceram. Int. 38 (2011) 2011–2019 [6] Dudczig, S.; Aneziris, C. G.; Ballaschk, U.: Testing of thermal shock resistant fine grained alumina ceramics in a metal casting simulator. refractories WORLDFORUM 4 (2012) [1] 105–111 [7] Berek, H.; Aneziris, C. G.; Veres, D.: Interface reactions in fine-grained Al2O3 ceramics with TiO2- and ZrO2-additions for refractory applications as investigated by XCT and EBSD. refractories WORLDFORUM 4 (2012) [1] 85–90 [8] Aneziris, C. G.; Schärfl, W.; Ullrich, B.: Microstructure evaluation of Al2O3 ceramics with Mg–PSZ- and TiO2-additions. J. Europ. Ceram. Soc. 27 (2007) 3191–3199 [9] Bayer, G.: Thermal expansion characteristics and stability of pseudobrookite-type compounds, M3O5. J. Less Common Metals 24 (1971) 129–138 [10] Cleveland, J. J.; Bradt, R. C.: Grain size/microcracking relations for pseudobrookite oxides. J. Amer. Ceram. Soc. 61 (1978) 478–481 [11] Ohya, Y.; Nakagawa, Z.; Hamano, K.: Grain boundary microcracking due to thermal expansion anisotropy in aluminum titanate ceramics. J. Amer. Ceram. Soc. 70 (1987) C185– C186 [12] Thomas, H. A. J.; Stevens, R.: Aluminum titanate – a literature review, Part II: Engineering properties and thermal stability. British Ceram. Trans. J. 88 (1989) 184–190 [13] Low, I. M.; Lawrence, D.; Smith, R. I.: Factors controlling the thermal stability of aluminum titanate ceramics in vacuum. J. Amer. Ceram. Soc. 88 (2005) 2957–2961 [14] Wohlfromm, H.; Moya, J. S.; Pena, P.: Effect of ZrSiO4 and MgO additions on reaction sintering and properties of Al2TiO5-based materials. J. Mater. Sci. 25 (1990) 3753–3764 [15] Tilloca, G.: Thermal stabilization of aluminum titanate and properties of aluminum titanate solid solutions. J. Mater. Sci. 26 (1991) 2809– 2814 [16] Freudenberg, B.; Mocellin, A.: Aluminum titanate formation by solid state reaction of fine Al2O3 and TiO2 powders. J. Amer. Ceram. Soc. 70 (1987) 33–38 [17] Skiera, E.; et al.: Controlled crack propagation experiments with a novel alumina based refractory. Adv. Engin. Mater. 14 (2012) 248– 254 [18] Hasselman, D. P. H.: Unified theory of thermal shock fracture initiation and crack propagation in brittle ceramics. J. Amer. Ceram. Soc. 52 (1969) 600–604 [19] Racher, R. P.; McConell, R. W.; Buhr, A.: Magnesium aluminate spinel raw materials for high performance refractories for steel ladles. Retrieved 6 December 2015 from www.almatis.com/media/3994/magnesiumaluminate- spinel-raw-materials-for-high-per formance.pdf [20] Moritz, K.; et al.: Thermal shock resistance of alumina and alumina-rich spinel refractories containing aluminum titanate. Proc. of the Unified Int. Technical Conf. on Refractories – UNITECR 2013 (Eds.: Goski, D.; Smith, J. D.), Hoboken, NJ, 2014, DOI: 10.1002/9781118837009.ch135 [21] Moritz, K.; et al.: Magnesium aluminate spinel ceramics containing aluminum titanate for refractory applications. J. Ceram. Sci. Technol. 5 (2014) 125–130 [22] Magnesium aluminate spinels. Product data, retrieved 6 December 2015 from www. almatis.com/media/58681/gp-rcp_004_mag nesium_aluminate_spinel_0215.pdf [23] Dinger, D. R.; Funk, J. E.: Particle packing V – computational methods applied to experimental distributions. Interceram 43 (1994) 87–89 [24 Buscaglia, V.; Nanni, P.: Decomposition of Al2TiO5 and Al2(1–x)MgxTi(1+x)O5 ceramics. J. Amer. Ceram. Soc. 81 (1998) 2645–2653 [25] Low, I. M.; Oo, Z.: Reformation of phase composition in decomposed aluminum titanate. Mater. Chem. Phys. 111 (2008) 9–12 [26] Sathiyakumar, M.; Gnanam, F. D.: Influence of MnO and TiO2 additives on density, microstructure and mechanical properties of Al2O3. Ceram. Int. 28 (2002) 195–200 [27] Sarkar, R.; Bannerjee, G.: Effect of TiO2 on reaction sintered MgO–Al2O3 spinels. J. Europ. Ceram. Soc. 20 (2000) 2133–2141 [28] Wachtman, J. B. Jr.; Lam, D. G. Jr.: Young’s modulus of various refractory materials as a function of temperature. J. Amer. Ceram. Soc. 42 (1959) 254–260

Copyright

Göller Verlag GmbH