Functionally Graded Materials Made by Water-Based Multilayer Technology

Uwe Scheithauer, Eric Schwarzer, Tim Slawik, Hans-Jurgen Richter, Tassilo Moritz, Alexander Michaelis

Fraunhofer Institute for Ceramic Technologies and Systems – IKTS, 01277 Dresden/Germany

Revision 01.12.2015, 08.01.2016

Volume 8, Issue 2, Pages 95 - 101

Abstract

The development of Functionally Graded Materials (FGM) with graded microstructures concerning composition or porosity opens new fields of application. Components with different porosities combine different properties in the gradient structure regarding thermal conductivity and capacity, density, mechanical strength and elastic modulus. Graded microstructures result in innovative, multi-functional properties combinations, such as hard and ductile, electrically or thermally conductive and insulating, magnetic and nonmagnetic for metal-ceramic composites. The ceramic multilayer technology allows the production of FGM with a high value concerning the degrees of freedom for the designing of FGM. The possibilities of the multilayer technologies were demonstrated by the water-based production of multilayers with graded density (Ca-aluminate/Al2O3). Technologies were developed for the production of ceramic platelets as well as the modification of the connection between the different. SEM-images of cross-sections of the sintered components and of fractured surfaces of tested samples show the different connection between the single layers within the sintered structures as well as the crack propagation.

Keywords

functionally graded material, graded microstructure, multilayer, tape casting

References

[1] Kieback, B.; Neubrand, A.; Riedel, H.: Processing techniques for functionally graded materials. Mater. Sci. and Engin. A 362 (2003) [1–2] 81–106 [2] Hein, J.; et al.: Prospect of a new generation of refractories made by ceramic multilayer technology. Refractories Manual (2012) 91–95 [3] Lee, H. C.; Potapova, Y.; Lee, D.: A core-shell structured, metal-ceramic composite supported Ru catalyst for methane steam reforming. J. of Power Sources 216 (2012) 256–260 [4] Molin, S.; et al.: Stainless steel/yttria stabilized zirconia composite supported solid oxide fuel cell. J. Fuel Cell Sci. Technol. 8 (2011) 1–5 [5] Roberts, H. W.; et al.: Metal-ceramic alloys in dentistry: A review. J. of Prosthodontics 18 (2009) [2] 188–194 [6] Largiller, G.; et al.: Deformation and cracking during sintering of bimaterial components processed from ceramic and metal powder mixes. Part I: Experimental investigation. Mechanics of Materials 53 (2012) 123–131 [7] Meulenberg, W. A.; et al.: Graded porous TiO2 membranes for micro-filtration. J. Europ. Ceram. Soc. 26 (2006) 449–454 [8] Baumann, A.; et al.: Multi component powder injection moulding of metal-ceramic-composites. Proc. of the Euro Int. Powder Metallurgy Congress and Exhibition 2009 (2009) [9] Boccaccini, A. R.; Ondracek, G.; Mombello, E.: Determination of stress concentration factors in porous materials. J. Mater. Sci. L. 14 (1995) 534 ff. [10] Boccaccini, A. R.: Comment of dependence of ceramic fracture properties on porosity. J. of Mater. Sci. Letters 13 (1994) 1035–1037 [11] Mortensen, A.; Suresh, S.: Functionally graded metals and metal-ceramic composites: Part 1. Processing. Int. Mater. Rev. 40 (1995) [6] 239–265 [12] Moya, J. S.; et al.: Functionally gradient ceramics by sequential slip casting. Mater. Letters 14 (1992) [5] 333–335 [13] Moya, J. S.; et al.: Elastic modulus in rigid Al2O3/ZrO2 ceramic laminates. Scripta Materialia 37 (1997) [7] 1095–1103 [14] Baumann, A.; et al.: Stahl-Keramik-Verbunde durch Pulverspritzgiesen, in: Krenkel, W.: Verbundwerkstoffe. 17. Symposium Verbundwerkstoffe und Werkstoffverbunde 2009, Bayreuth. Weinheim 2009, 502–512 [15] Zschippang, E.; et al.: Charakterisierung und Verarbeitung von Si3N4-SiC-MoSi2-Kompositen fur Heizleiteranwendungen. Keram. Z. 65 (2013) [5] 294–297 [16] Scheithauer, U.; et al.: Influence of the kind and amount of pore forming agents on the thermal shock behaviour of carbon-free refractory components produced by multilayer technology. refractories WORLDFORUM 4 (2011) [1] 130–136 [17] Scheithauer, U.; et al.: Development of planar and cylindrical refractories with graded microstructure. UNITECR 2013, 13th Biennial Worldwide Congr. on Refractories, Victoria, Canada, In: Electronic Proc. Paper05-08-peer-reviewed (2013) 339–343 [18] Scheithauer, U.; et al.: Ceramic and metal-ceramic components with graded microstructure, 11th Int. Conf. on Ceramic Mater. and Com ponents for Energy and Environmental Appl. Peer-reviewed manuscript, accepted for publication in 2016 [19] Mannschatz, A.; et al.: Enabling co-sintering of ATZ/ZTA ceramic compounds by two-component injection moulding with green tapes as interlayers. Proc. of Euro PM2011 – Powder Injection Moulding – Advance Processing, reviewed manuscript, 2011 [20] Mannschatz, A.; et al.: Manufacturing of twocolored co-sintered zirconia components by inmold-labelling and 2C-Injection molding, cfi/Ber. DKG 91 (2014) [8] E 53–E 58 [21] Zhang, Y.; et al.: Rapid prototyping and combustion synthesis of TiC/Ni functionally gradient materials. Mater. Sci. and Engin. A 299 (2001) [1–2] 218–224 [22] Scheithauer, U.; et al.: Studies on thermo-plastic 3D printing of steel-zirconia composites. J Mater. Res. 29 (2014) [17] 1931–1940 [23] Scheithauer, U.; et al.: Additive manufacturing of metal-ceramic-composites by thermoplastic 3D-printing. J. Ceram. Sci. Tech. 6 (2015) [2] 125–132 [24] Scheithauer, U.; et al.: Processing of thermoplastic suspensions for additive manufacturing of ceramic- and metal-ceramic-composites by thermoplastic 3D-printing (T3DP). 11th Int. Conf. on Ceramic Mater. and Components for Energy and Environmental Appl. Peer-reviewed manuscript, accepted for publication in 2016 [25] Mistler, R. E.: Tape casting: the basic process for meeting the needs of the electronics industry. Amer. Ceram. Soc. Bull. 69 (1990) 1022– 1026 [26] Reed, J.S.: Principles of ceramics processing (2nd ed.). New York 1994 [27] Piwonski, M.; Roosen, A.: Low pressure lamination of ceramic green tapes by gluing at room temperature. J. Europ. Ceram. Soc. 19 (1999) 263–270 [28] Roosen, A.: New lamination technique to join ceramic green tapes for the manufacturing of multilayer devices. J. Europ. Ceram. Soc. 21 (2001) [10–11] 1993–1996 [29] Jurkow, D.; et al.: Cold chemical lamination of ceramic green tapes. J. Europ. Ceram. Soc. 29 (2009) 703–709 [30] Hotza, D.; Greil, P.: Review: Aqueous tape casting of ceramic powders. Mater. Sci. and Engin. A202 (1995) 206–217 [31] Mistler, R. E.; Twiname, E. R.: Tape casting theory and practice. Westerville, OH, 2000 [32] Mercadelli, E.; et al.: Tape cast porosity-graded piezoelectric ceramics. J. Europ. Ceram. Soc. 30 (2010) 1461–1467 [33] Yeo, J.; Jung, Y.; Choi, S.: Design and microstructure of ZrO2/SUS316 functionally graded materials by tape casting. Mater. Letters 37 (1998) 304–311 [34] Yeo, J.; Jung, Y.; Choi, S.: Zirconia-stainless steel functionally graded material by tape casting. J. Europ. Ceram. Soc. 18 (1998) 1281–1285 [35] Chen, Y.; et al.: Novel functionally graded acicular electrode for solid oxide cells fabricated by the freeze-tape-casting process. J. of Power Sources 213 (2012) 93–99 [36] Liu, Z.; et al.: Fabrication and characterization of functionally-graded LSCF cathodes by tape casting. Int. J. of Hydrogen Energy 38 (2013) 1082–1087 [37] Bulatova, R.; et al.: Thickness control and interface quality as functions of slurry formulation and casting speed in side-by-side tape casting. J. Europ. Ceram. Soc. 34 (2014) 4285–4295 [38] Hesse, F.; Tenzer, H.-J.: Erzeugnisse der Papierverarbeitung, Band 3: Grundlagen der Papierverarbeitung. Leipzig 1966 [39] Hesse, F., Tenzer, H.-J.: Arbeitsverfahren der Papierverarbeitung, Band 2: Grundlagen der Papierverarbeitung. Leipzig 1966 [40] Slawik, T.; et al.: Spiralwickeltechnik fur mehrlagige keramische Hulsen. Wochenblatt fur Papierfabrikation 5 (2012) [41] Scheithauer, U.; et al.: Spiralwickeln keramischer und pulvermetallurgischer Grunfolien. Keram. Z. 64 (2012) [1] 35–39 [42] Slawik, T.; et al.: Anwendung papiertechnologischer Verfahren zur Erzeugung metallkeramischer Werkstoff-Verbunde. Int. ECEMP-Kolloquium 2012 [43] He, M.-Y.; Hutchinson, J. W.: Crack deflection at an interface between dissimilar elastic Materials. Int. J. Solids Struct. 25 (1989) [9] 1053–1067, [44] He, H. Y.; Evans, A. G.; Hutchinson, J. W.: Crack deflection at an interface between dissimilar elastic materials: Role of residual stresses. Int. J. Solids Struct. 31 (1994) [24] 3443–3455 [45] Pavlacka, R.; et al.: Fracture behavior of layered alumina microstructural composites with highly textured layers. J. Amer. Ceram. Soc. 96 (2013) [5] 1577–1585 [46] Chang, Y.; Bermejo, R.; Messing, G. L.: Im proved fracture behavior of alumina microstructural composites with highly textured compressive layers. J. Amer. Ceram. Soc. 97 (2014) [11] 3643–3651 [47] Scheithauer, U.; et al.: Innovative kiln furniture, their influence on the temperature distribution within the kiln, and a new production technology. Interceram 63 (2014) 312–316 [48] Scheithauer, U.; et al.: Novel generation of kiln furniture. UNITECR 2013. 13th Biennial Worldwide Congress on Refractories, Victoria, Canada, Electronic Proc., Paper04-08-peerreviewed (2013) 250–255 [49] Haderk, K.; et al.: Development of ceramic tapes for thermal shock resistant calcium aluminate refractory materials with graded porosity. Interceram Refractories Manual, (2011) [2] 84–87 [50] Scheithauer, U.; et al.: Development of planar and cylindrical refractories with graded microstructure. UNITECR 2013. 13th Biennial Worldwide Congress on Refractories, Victoria, Canada, Electronic Proc., Paper 05-08-peerreviewed (2013) 339–343

Copyright

Göller Verlag GmbH