Cellular Magnesia/Carbon Refractories: Processing, (Thermo-)Mechanical Characterization and Finite Element Modeling

A. Jung1, T. Bleistein1, D. Foetz2, S. Diebels3, D. Quinten4, G. Falk4

1 Saarland University, Institute of Applied Mechanics, Campus A4 2, 66123 Saarbrücken/ Germany
2 Saarland University, Research Group, Structural and Functional Ceramics, Campus C6 3, 66123 Saarbrücken/Germany
3 Saarland University, Institute of Applied Mechanics, Campus A4 2, 66123 Saarbrücken/ Germany
4 Saarland University, Research Group, Structural and Functional Ceramics, Campus C6 3, 66123 Saarbrücken/Germany

Revision 01.02.2015, 07.01.2016

Volume 8, Issue 2, Pages 102 - 109

Abstract

Fabrication steps of MgO–C refractories with a cellular carbon structure are shown: First, the transformation of resin coated polyurethane foams into reticulated vitreous carbon, followed by the antioxidant coatings with zirconia or silicon carbide and then the infiltration with aqueous magnesia slurries. Samples were tested regarding their (thermo-)mechanical properties. In addition, their corrosion behavior in an induction furnace was investigated. Finally, thermal damage after thermal shock of a standard MgO–C brick with randomly distributed carbon was compared with that of a MgO–C sample that contains carbon in a perfect periodic cellular structure by using the finite element analysis with a thermo elastic model.

Keywords

reticulated vitreous carbon, thermal shock, FEM modeling

References

[1] Krass, Y. R.: World production of steel and magnesia refractories: State of the art and trends of development. Refract. Ind. Ceram 42 (2001) 417–425 [2] Damhof, F.; Brekelmans, W.A.M.; Geers, M.G.D.: Non-local modeling of thermal shock damage in refractory materials. Engin. Fract. Mech. 75 (2008) 4706–4720 [3] Damhof, F.; Brekelmans, W.A.M.; Geers, M.G.D.: Experimental analysis of the evolution of thermal shock damage using transit time measurement of ultrasonic waves. J. Europ. Ceram. Soc. 29 (2009) 1309–1322 [4] Falk, G.; et al.: Experimental characterization and thermo-mechanical modelling of micro structure interactions in cellular carbon magnesia refractories. J. of Ceramic Sci. and Technol. 5 (2014) 101–114 [5] Falk, G.; et al.: Feuerfeste MgO-C Komposite mit zellularer Kohlenstoffstruktur, Teil 1: Experimentelle Charakterisierung. Keram. Z. 4 (2014) 221–225 [6] Jung, A.; et al.: Thermal shock resistivity of hybrid carbon foam materials: Experimental and model predictions. Mech. Mater. 82 (2015) 13–27 [7] Jung, A.; et al.: Feuerfeste MgO-C Komposite mit zellularer Kohlenstoffstruktur. Teil 2: Mikrostrukturoptimierung durch thermo-mechanische Simulation. Keram. Z. 5/6 (2014) 295–300 [8] Kingery, W. D.: Factors effecting thermal stress resistance of ceramic materials. J. Amer. Ceram. Soc. 38 (1955) 3–17 [9] Hasselman, D.P.H.; Badaliance, R.; Chen, E.P.: Thermal fatigue and its failure prediction for brittle ceramics. In: Thermal Fatigue of Materials and Components, 1976, 55–67 [10] Hasselman, D.P.H.; et al.: Failure prediction of the thermal fatigue resistance of a glass. J. Mater. Sci. 11 (1976) 458–464 [11] Hasselman, D.P.H.: Rolle der Bruchzähigkeit bei der Temperaturwechselbeständigkeit feuerfester Erzeugnisse. Ber. DKG 54 (1977) 195–201 [12] Gruber, D.; Andreev, K.; Harmuth, H.: FEM simulation of the thermomechanical behaviour of the refractory lining of a blast furnace. J. Mater. Process. Technol. 155–156 (2004) 1539–1543 [13] Andreev, K.; Harmuth, H.: FEM simulation of the thermo-mechanical behaviour and failure of refractories – A case study. J. Mater. Process. Technol. 143–144 (2003) 72–77 [14] Stabler, J.; Baker, G.: Fractional step methods for thermo-mechanical damage analyses at transient elevated temperatures. Int. J. Numer. Methods Eng. 48 (2000) 761–78 [15] Nechnech, W.; Meftah, F.; Reynouard, J. M.: An elasto-plastic damage model for plain concrete subjected to high temperatures. Engin. Struct. 24 (2002) 597–611 [16] Pearce, C.J.; et. al: Gradient enhanced thermomechanical damage model for concrete at high temperatures including transient thermal creep. Int. J. Numer. Anal. Methods Geomech. 28 (2004) 715–735 [17] Jung, A.; Diebels, S.: Thermo-mechanical properties of magnesia carbon foam composites. In: Coupled Problems in Science and Engineering VI, San Servolo, Venice, Italy, 2015, 94–105 [18] Damhof, F.; Brekelmans, W. A. M.; Geers, M. G. D.: Non-local modelling of cyclic thermal shock damage including parameter estimation. Eng. Fract. Mech. 78 (2011) 1846–1861 [19] Skiera, E.: Thermomechanische Charakterisierung neu entwickelter Feuerfestwerkstoffe. Jülich 2012 [20] Da Silveira, W.; Falk, G.: Reinforced cellular carbon matrix-MgO composites for high temperature applications: Microstructure aspects and colloidal processing. Adv. Engin. Mater. 13 (2011) 982–989 [21] Da Silveira, W. M.; Falk, G.: Production of refractory materials with cellular matrix by colloidal processing. refractories WORLDFORUM 4 (2012) 143–150 [22] Da Silveira, W.; Falk, G.: Functionalized cellular carbon-MgO composites: From interface processing to thermal shock resistant low-carbon MgO–C refractories. Adv. Engin. Mater. 16 (2014) 301–308 [23] Gaies, D.; Faber, K.T.: Thermal properties of pitch-derived graphite foam. Carbon 40 (2002) 1131–1150 [24] Chen, C.; et al.: Carbon foam derived from various precursors. Carbon 44 (2006) 1535– 1543 [25] Li, S.; et al.: Formation mechanism of carbon foams derived from mesophase pitch. Carbon 49 (2011) 618–624 [26] Maleki, H.; et al.: Determining the shortest production time for glassy carbon ware. Carbon 35 (1997) 227–234 [27] Yarushina, T. V.; et al.: Periclase-carbon composite refractories with new complex binder. Refract. Ind. Ceram. 48 (2007) 170–175 [28] Lei, S.; et al.: Preparation of phenolic-based carbon foam with controllable pore structure and high compressive strength. Carbon 48 (2010) 2644–2673 [29] Oiye, É. N.; et al.: Development of an alternative route for production of glassy polymeric carbon electrodes in laboratorial scale. Macromol. Symp. 299–300 (2011) 147–155 [30] Inagaki, M.: New carbons-control of structure and functions. Amsterdam 2000 [31] Chen, Y.; et al.: Preparation of pitch-based carbon foam using polyurethane foam template. Carbon 45 (2007) 2126–2139 [32] Salomão, R.; Bittencourt, L. R. M.; Pandolfelli, V.C.: A novel approach for magnesia hydration assessment in refractory castables. Ceram. Int. 33 (2007) 803–810 [33] Amaral, L. F.; et al.: Chelants to inhibit magnesia (MgO) hydration. Ceram. Int. 37 (2011) 1537–1542 [34] Aneziris, C.; Dudczig, S., Helge, H.: Verfahren für die Herstellung von basischen kohlenstoffhaltigen Erzeugnissen durch Gießformgebung und/oder bildsame Formgebung. DE 102006031700 A1, 2008 [35] Noda, T.; Inagaki, M.; Yamada, S.: Glass-like carbons. J. Non-Cryst. Solids 1 (1969) 285– 302 [36] Salmang, H., et al.: Keramik. Berlin, Heidelberg 2007

Copyright

Göller Verlag GmbH