Regularities in the Temperature Dependence of the Thermal Conductivity of Refractory Products and Two Metallic Alloy Groups

Axel Eschner

This email address is being protected from spambots. You need JavaScript enabled to view it., www.feuerfest-beratung.de

Revision

Volume 8, Issue 4, Pages 67 - 72

Abstract

The temperature dependence of the thermal conductivity of refractory products is calculated from the linear course between the logarithms of the thermal conductivity and the logarithms of the temperature in Kelvin. Two exponents were generated, n and N where the reference point for N is the exponent to the bases of the Euler constant e (thermal conductivity at 1 K) and the temperature dependence is the exponent n to the temperature in Kelvin. Within different refractory groups there is a linear dependence between the exponents N and n with a very high coefficient of determination. The same relation was found for two groups of metallic alloys. High coefficients of determination within refractory groups enables to calculate the temperature-thermal conductivity values within the range from 0 up to 1400 ºC from one single thermal conductivity/temperature value and gives the possibility to calculate the integral mean of the thermal conductivity between two temperatures.

Keywords

refractories, alloys, thermal conductivity

References

[1] Eschner, A.; et al.: Erfahrungen mit dem Heißdrahtverfahren zur Bestimmung der Wärmeleitfähigkeit feuerfester Werkstoffe. Tonindustriezeitung (1974) [9] 212–219 [2] Klasse, F.; et al.: Vergleichsverfahren zur Ermittlung der Wärmeleitfähigkeit keramischer Werkstoffe. Ber. DKG 43 (1957) [6] 183–289 [3] Traustel, S.; et al.: Ein Beitrag zur Erforschung des Wärmeleitvermögens von Mischkörpern aus Komponenten verschiedener Leitfähigkeit mit Hilfe der elektrischen Analogie. Tonindustrie- Zeitung (1961) 565–569 [4] France, J.; Kingery, W.D.: Experimental investigations of effect of porosity on thermal conductivity. J. Amer. Ceram. Soc. 37 (1954) [2] 99–107 [5] Vosteen, H.-D.; Schellschmidt, R.: Heat flow and the structure of the lithosphere, influence of temperature on thermal conductivity, thermal capacity and thermal diffusivity for differ- ent types of rock. Physics and Chemistry of the Earth, Parts A/B/C 28 (2003) [9–11] 499–509 [6] Palankokovski, V.: Simulation of heterojunction, bipolar transistors. PhD Thesis at Technical University Wien, Dez. 2000, Chapter 3.2.3. [7] Schatz, J.F.; Simmons, G.: Thermal conductivity of earth materials at high temperatures. J. of Geophysical Research 77 (1972) 6966–6983 [8] Kukkonen, I.; Lindberg, A.: Thermal properties of rocks at the investigation sites: measured and calculated thermal conductivity, specific heat capacity and thermal diffusivity. Working Report 98-09e, March 1998 POSIVA OY Mikonkatu 15 A, FIN-001 00 Helsinki, Finland [9] Mottgagy, D.; et al.: Temperature dependence of then relationship of thermal diffusivity versus thermal conductivity for crystal rocks. J. of Geologische Vereinigung 7 (2008) [2] 435 [10] Eschner, A.: Die wärmetechnischen Eigenschaften von Magnesiasteinen für Niedertarifspeicherheizungen und ihr Einfluß auf die Geometrie des Speichermaterials. PhD Thesis TU Clausthal, Mai 1978 [11] VDI Wärmeatlas, Kapitel Dea 1-Dea15, Stoffwerte von reinen Metallen und Metalllegierungen. Berlin2006

Copyright

Göller Verlag GmbH