Investigation of Silica Gels as Adsorbents in SO2 Enriched Gases

Friederike Klenert1, Christos G. Aneziris1, Stefan Thiel2, Steffen Krzack2

1 Institute of Ceramic, Glass and Construction Materials, TU Bergakademie Freiberg, Freiberg/Germany
2 Institute of Energy Process Engineering and Chemical Engineering, TU Bergakademie Freiberg, Freiberg/Germany

Revision 12.12.2016, 22.12.2016

Volume 9, Issue 2, Pages 85 - 93

Abstract

Flue gas cleaning in power plants is required to remove harmful components such as sulphur dioxide SO2, mercury Hg, nitrogen oxides NOx, volatile organic compounds VOC, hydrochloric acid HCl, hydrogen fluoride HF, heavy metals, dioxins, furans and fly ash. In this study, the adsorption performance of silica gels, the breakthrough behaviour regarding SO2 rich gases and the regeneration of silica gels were investigated. Firstly, the influence of different grain sizes on the adsorption of SO2 and secondly the ability of regeneration regarding different grain sizes and relative humidity of storing the silica gels were examined. The best silica gel achieved 25 % of dynamic adsorption capacity and 72 % of the breakthrough time compared to active coke. Suitable conditions for complete thermal regeneration of silica gels were found. Dependent on the grain size and relative humidity of storing the silica gels, a coarse grain and medium relative humidity of 45 % was favourable for a complete regeneration.

Keywords

adsorption of SO2, desorption of SO2, regeneration of adsorbents, flue gas treatment, silica gel

References

[1] Kisamori, S.; Kawano, S.; Mochida, I.: SO2, NOx Removal at ambient Temperatures using activated carbon fibers. Preprints of papers. Amer. Chem. Soc. Division Fuel Chemistry 38 (1993) 421–421 [2] Piechota, R.; Gillmann, P.; Görner, K.: Rauchgasreinigung bei der Verbrennung von Biomasse auf einem wassergekühlten Rost in kleinen dezentralen Anlagen. DGMK-Fachbereichstagung Energetische Nutzung von Biomassen, 2006 [3] Nethe, L.P.: Der Einsatz von Sorbentien im gesamten System von Abgasreinigungsanlagen. Tagung Trockene Abgasreinigung, 2005 [4] Liberti, A.; Brocoo, D.; Possanzini, M.: Adsorption and oxidation of sulfur dioxide on particles. Atmospheric Environment 12 (1978) 255–261 [5] DeBarr, J.A.; Lizzio, A.A.; Daley, M.A.: Adsorption of SO2 on bituminous coal char and activated carbon fiber. Energy & Fuels 11 (1997) 267–71 [6] Daley, M.A.; et al.: Adsorption of SO2 onto oxidized and heat-treated activated carbon fibers (ACFs). Carbon 35 (1997) 411–417 [7] Rodriguez-Mirasol, J.; Cordero, T.; Rodriguez J.: Effect of oxygen on the adsorption of SO2 on activated carbon. Extended Abstracts of 23rd Biennal Conf. on Carbon. College Park, (1997) [8] Kisamori, S.; et al.: Oxidative removal of SO2 and recovery of H2SO4 over poly(acrylonitrile)- based active carbon fiber. Energy & Fuels 8 (1994) 1337–1340 [9] Krzack, S.: Rohstoffliche und verfahrenstechnische Einflußfaktoren für die Aktivkoksherstellung aus Braunkohlen. Freiberger Forschungshefte A829 (1997) [10] Heschel, W.; Klose, E.; Krzack, S.: Eigenschaften, Anwendungsbereiche und Herstellungsmöglichkeiten von Kohlenstoffadsorbentien. Freiberger Forschungshefte A829 (1993) 9–20 [11] Krzack, S.; Heschel, W.; Liebscher, R.: Einsatz von Braunkohlenaktivkoks zur Reinigung schadstoffhaltiger Abgase aus Produktionsanlagen der Nichteisenmetallurgie. Freiberger Forschungshefte A829 (1993) 51–60 [12] Cole, R.; Shulman, H.L.: Adsorbing sulfur dioxide on dry ion exchange resins for reducing air pollution. Industrial and Engin. Chemistry 52 (1960) 859–860 [13] Sirkeciog˘ lu, A.; Altav, Y.; Erdem-S¸ enatalar, A.: Adsorption of H2S and SO2 on Bigadiç Clinoptilolite. Separation Sci. and Technol. 30 (1995) 2747–2762 [14] Tantet, J.; Eic´, M.; Desai, R.: Breakthrough study of the adsorption and separation of sulfur dioxide from wet gas using hydrophobic zeolites. Gas Separation & Purification 9 (1995) 213–220 [15] Belyakova, L.D.; et al.: Amine-modified silicas: Thermal stability and adsorption of gases. Russian Chem. Bull. 38 (1989) 885–891 [16] Thornsberry, W.L.: Isothermal gas chromatographic separation of carbon dioxide, carbon oxysulfide, hydrogen sulfide, carbon disulfide and sulfur dioxide. Analytical Chemistry 43 (1971) 452–453 [17] Ahmed, M.S; Attia, Y.A.: Multi-metal oxide aerogel for capture of pollution gases from air. Appl. Thermal Engin. 18 (1998) 787–797 [18] Zhao, Y.; et al.: Desulfurization Performance of Ether-Functionalized Imidazolium-Based Ionic Liquids Supported on Porous Silica Gel. Energy Fuels 29 (2015) 1941–1945 [19] Tseng, H.-H.; Wey, M.-Y.: Study of SO2 adsorption and thermal regeneration over activated carbon-supported copper oxide catalysts. Carbon 42 (2004) 2269–2278 [20] Klinski, S.: Studie: Einspeisung von Biogas in das Erdgasnetz, 2006 [21] Fischer, M.E.: Biogas purification: H2S removal using biofiltration. Master thesis, University of Waterloo, Waterloo, Ontario, Canada 2010 [22] Chou T.-C.; et al.: Selective removal of H2S from biogas by a packed silica gel adsorber tower. Biotechnol. Progress 2 (1986) 203–209 [23] Klenert, F.; Fruhstorfer, J.; Aneziris, C.G.: Investigation of transmittance and thermal conductivity properties of silica gels for application as transparent heat insulation materials. J. of Sol-Gel Sci. and Technol. 77 (2015) 315–324 [24] Klenert, F.; et al.: Microstructure and transmittance of silica gels for application as transpar ent heat insulation materials. J. of Sol-Gel Sci. and Technol. 75 (2015) 602–616 [25] Schießl, C.: Thermische Analyse: Möglichkeiten zur Untersuchung von dentalen Kunststoffen, PhD thesis, Universität Regensburg, Regensburg 2008 [26] Sonnenburg, A.: Strömungssimulation in der Umwelttechnlogie: Effiziente Versuchsplanung mit CFD (Computational Fluid Dynamics). Hessisches Ministerium für Wirtschaft, Verkehr und Landesentwicklung, Wiesbaden 2009 [27] Klöker, M.; et al.: CFD-gestützte Untersuchungen von Hydrodynamik und Stofftransport in Katalysatorschüttungen. Chemie Ingenieur Technik 76 (2004) 236–242 [28] Karau, A.; et al.: The influence of particle size distribution and operating conditions on the adsorption performance in fluidized beds. Biotechnol. and Bioengin. 55 (1997) 54–64 [29] Yean, S.; et al.: Effect of magnetite particle size on adsorption and desorption of arsenite and arsenate. J. of Mater. Research 20 (2005) 3255–3264 [30] Rasmuson, A.: The effect of particles of variable size, shape and properties on the dynamics of fixed beds. Chem. Engin. Sci. 40 (1985) 621–629 [31] Clarkson, C.R.; Bustin, R.M.: The effect of pore structure and gas pressure upon the transport properties of coal: a laboratory and modeling study. 1. Isotherms and pore volume distributions. Fuel 78 (1999) 1333–1344 [32] Iler, R.K.: The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties and Biochemistry. New York 1979 [33] Tseng, H.-H.; et al.: Catalytic removal of SO2, NO and HCl from incineration flue gas over activated carbon-supported metal oxides. Carbon 41 (2003) 1079–1085 [34] Kast, W.: Adsorption aus der Gasphase: Ingenieurwissenschaftliche Grundlagen und technische Verfahren. Weinheim 1988 [35] Brinker, C.J.; Scherer, G.W.: Sol-gel science: The physics and chemistry of sol-gel processing. Boston 1990 [36] Pramanik, A.; et al.: A mechanistic study of the initial stage of the sintering of sol-gel derived silica nanoparticles. Int. J. of Modern Engin. Res. 3 (2013) 1066–1070 [37] Tsai, W.T.; Lai, C.W.; Hsien, K.J.: Effect of particle size of activated clay on the adsorption of paraquat from aqueous solution. J. of Colloid and Interface Sci. 263 (2003) 29–34 [38] Mehlhorn, T.; Gerbeth, A.; Gemende, B.: Adsorptive Schwefelwasserstoffentfernung aus Biogas-Einfluss von Gasfeuchte und Sauerstoffgehalt auf den Adsorptionsprozess. Intensive Programme “Renewable Energy Sources”, (2011) 6–10 [39] Lincke, M.; Klöden, B.; Faßauer, B.: Entwicklung eines neuartigen energie- und rohstoffeffizienten Entschwefelungssystems für die Erzeugung von Bio-Erdgas: Schlussbericht zum Forschungsvorhaben, 2014 [40] Ramesohl, S.; et al.: Analyse und Bewertung der Nutzungsmöglichkeiten von Biomasse: Band 3: Biomassevergasung, Technologien und Kosten der Gasaufbereitung und Potenziale der Biogaseinspeisung in Deutschland. Endbericht, 2005 [41] Salvador, F.; Jiménez, C.: A new method for regenerating activated carbon by thermal desorption with liquid water under subcritical conditions. Carbon 34 (1996) 511–516 [42] Lim, J.-L.; Mitsumasa, O.: Regeneration of granular activated carbon using ultrasound. Ultrasonics Sonochem. 12 (2005) 277–282

Copyright

Göller Verlag GmbH