Determination of Permeability for Refractories: From Standard Test Methods to Improved Interpretation Technique of the Experimental Data

L. Loison1, T. Tonnesen1, R. Telle1, E. de Bilbao2, J. Poirier2

1 RWTH Aachen University, Institute of Mineral Engineering, 52070 Aachen/Germany
2 Université d\'Orléans, CEMHTI CNRS UPR 3079, 45071 Orléans/France

Revision 02.05.2017, 18.08.2017

Volume 9, Issue 4, Pages 113 - 116


Transport properties of refractory materials are required to predict the infiltration behavior in contact with corrosive species. For this reason, the determination of permeability values needs to be accurate and inherent to the material, independently from the experimental conditions. The present paper introduces a methodology, used in the field of geology and transposed in this case to refractory samples, in order to obtain reliable intrinsic permeability values. In the first part, this approach is applied to a data set obtained with a permeameter in atmospheric mode as described in the standards. The corrected flow regime plot contributes to select the measurements performed in Darcy flow regime, to further yield the intrinsic permeability with a Klinkenberg plot. In the second part an improved equipment with backpressure mode enables to extend this approach to refractories with low permeability, when Darcy flow conditions cannot be reached in atmospheric mode. The values obtained from the corrected flow regime plot were compared with the ones yield by Klinkenberg plot to ensure the reliability of this method.


permeability, refractories, Darcy flow regime, Klinkenberg plot


[1] Eusner, G.R.; Shapland, J.T.: Permeability of Blast-Furnace Refractories. J. Amer. Ceram. Soc. 42 (1959) [10] 459–464 [2] GHI-CEMHTI: Corrosion of refractories – From raw material, microstructure, and design to new energy applications. FIRE: Aachen – Orléans, 2016–2018, [3] Chastanet, J.; Royer, P.; Auriault, J.-L.: Does Klinkenberg's Law Survive Upscaling? Transport in Porous Media 56 (2004) [2]171–198 [4] Innocentini, M.D.M.; Pardo, A.R.F.; Salvini, V.R.; Pandolfelli, V.C.: How accurate is Darcy's law for refractories. Amer. Ceram. Soc. Bull. 78 (1999) [11] 64–68 [5] Innocentini, M.D.M.; Pardo, A.R.F.; Pandolfelli, V.C.: Influence of Air Compressibility on the Permeability Evaluation of Refractory Castables. J. Amer. Ceram. Soc. 83 (2000) [6] 1536–1538 [6] Collignon, B.; Moyne, C.; Guichard, J.L.; Perrot, C.; Jannot, Y.: Modelling the pressure dependence and the influence of added polymeric fibers on the permeability of refractory concretes. Ceramics Int. 37 (2011) [2] 627–634 [7] Innocentini, M.D.M.; Pardo, A.R.F.; Pandolfelli, V.C.; Menegazzo, B.A.; Bittencourt, L.R.M.; Rettore, R.P.: Permeability of High-Alumina Refractory Castables Based on Various Hydraulic Binders. J. Amer. Ceram. Soc. 85 (2002) [6] 1517–1521 [8] Dense, shaped refractory products – Determination of permeability to gases, ISO 8884-91, I.S. Organisation, 1991 [9] Prüfverfahren für dichte geformte Erzeugnisse, Teil 4: Bestimmung der Gasdurchlässigkeit, DIN EN 993-4, D.I.f. Normung, 1995 [10] Standard Test Method for Permeability of Refractories, ASTM C577-07, ASTM, 2007 [11] Klinkenberg, L.J.: The Permeability of Porous Media to Liquids and Gases. API Drilling and Production Practice1941, American Petroleum Institute: Tulsa. p. 200–213 [12] Forchheimer, P.: Wasserbewegung durch Boden. Zeit. Ver. Deutsch. Ing. 45 (1901) 1781–1788 [13] Innocentini, M.D.M.; Pandolfelli, V.C.: Permeability of Porous Ceramics Considering the Klinkenberg and Inertial Effects. J. Amer. Ceram. Soc. 84 (2001) [5] 941–944 [14] Dranchuk, P.M.; Kolada, L.J.: Interpretation of Steady Linear Visco-Inertial Gas Flow Data. The J. of Canadian Petroleum Technology 7 (1968) [1] [15] Sobieski, W.; Trykozko, A.: Darcy's and Forchheimer's Laws in Practice. Part 1. The Experiment, Technical science 17 (2014) [4] 321–335 [16] Wu, Y.-S.; Pruess, K.; Persoff, P.: Gas Flow in Porous Media With Klinkenberg Effects. Transport in Porous Media 32 (1998) [1] 117–137


Göller Verlag GmbH