Rotary Kilns for Hazardous Waste Incineration: Refractory Wear Mechanism and Lifetime Prolongation

Adrian Villalba Weinberg1, Dominique Goeuriot2, Cyrille Varona3, Xavier Chaucherie4, Jacques Poirier5

1 BONY SA – Produits réfractaires, 42001 Saint-Étienne/France
2 LGF CNRS UMR 5307, MINES Saint-Étienne, 42023 Saint-Étienne/France
3 BONY SA – Produits réfractaires, 42001 Saint-Étienne/France
4 SARPI-VEOLIA, 78520 Limay/France
5 CEMHTI CNRS UPR 3079, Université d’Orléans, 45071 Orléans/France

Revision 15.05.2017, 17.10.2017

Volume 10, Issue 1, Pages 82 - 86

Abstract

The rotary kiln is the most common system to incinerate hazardous waste. However, the many-sided kiln conditions make it diffcult to find appropriate refractory materials, able to endure for long time. To determine the refractory wear mechanism, a comprehensive post-mortem analysis was conducted on outworn refractories from six incineration plants. Unexpectedly, the actual reason for the material loss was found to be not corrosion, but structural spalling due to large cracks growing at the hot facing side, parallel to a glass- densifed zone. This densifed zone resulted from slag infltration at temperature peaks (>1200 °C) by partially melted bottom ash. Thermal shocks and cycling combined with a thermal expansion mismatch between the infltrated and non-infltrated zone were responsible for the crack formation. Thus, to encounter this type of spalling, novel refractories with reinforced bonding systems were developed, which exhibit good slag infltration resistance, excellent thermal shock and cycling resistance, and high mechanical strength. Pilot-scale rotary kiln tests and industrial tests have demonstrated the serviceability of these novel refractories, which have the potential to become an environment-friendly alternative to nowadays widely-used alumina-chromia refractories.

Keywords

failure analysis, structural spalling, mullite-zirconia

References

[1] European IPPC Bureau: Reference document on the best available techniques (BAT) for waste incineration, 2006 [2] Villalba Weinberg, A.; et al.: Seeking suitable refractories to limit the wear in rotary kilns for hazardous waste incineration. Proc. UNITECR, September 15–18, Vienna, Austria, 2015 [3] Villalba Weinberg, A.; et al: Extending refractory lifetime in rotary kilns for hazardous waste incineration. Ceram. Int. 42 (2016) [15] 17626–17634 [4] Villalba Weinberg, A.; et al.: Corrosion of Al2 O3-SiO2 refractories by sodium and sulfur vapors: A case study on hazardous waste incinerators. Ceram. Int. 43 (2017) 5743–5750 [5] Vosteen, B.; Beyer, J.; Boukhofer, T.: Simultaneous inner and outer thermography of rotary kilns for hazardous waste incineration – controlled protective slagging results in a considerable prolongation of refractory life. VGB powertech 82 (2012) [9] 71–77 [6] Bly, L.; Pena, R.: Waste incineration – some background and furnace refractory design review. Proc. UNITECR 2 (1989) 980–993 [7] Hoshizuki, H.; et al.: Improvement to Al2O3 –Cr2O3 bricks for waste melting furnaces. Proc. UNITECR 2013, 1325–1331 [8] Kristensen, A.; Eschner, A.; Stein, H.: Feuerfestverschleiß in Sondermüllverbrennungsanlagen bei unterschiedlichen Betriebsbedingungen (in German). Int. Colloquium on Refractories, Aachen 1987, 170–207 [9] Neuenburg, M.; et al.: Beanspruchung und Verschleißmechanismen von feuerfestem Material in Sondermüllverbrennungsanlagen (in German). Int. Colloquium on Refractories, Aachen 1987, 208–221 [10] Ohno, M.; et al.: The improvement of Al2O3 –Cr2O3 bricks for waste melting furnaces. Proc. UNITECR 2009 [11] Schweez, D.; Sperber, J.; Burgard, R.: Recent lining concepts for thermal treatment of hazardous wastes. Int. Colloquium on Refractories, Aachen 2013, 127–130 [12] Tanida, H.; et al.: Recent states of refractories for waste melting furnaces. Proc. UNITECR 2011, 1–A–16 [13] Hasselman, D.P.H.: Elastic energy at fracture and surface energy as design criteria for thermal shock. J. Amer. Ceram. Soc. 46 (1963) [11] 535–540 [14] Rendtorff, N.; Garrido, L.; Aglietti, E.: Effect of the addition of mullite-zirconia to the thermal shock behavior of zircon materials. Mater. Sci. Eng. A 498 (2018) [1] 208–215 [15] Rendtorff, N.; Garrido, L.; Aglietti, E.: Thermal shock behavior of dense mullite-irconia composites obtained by two processing routes. Ceram. Int. 34 (2008) [8] 2017–2024 [16] Kaiser, A.; Lobert, M.; Telle, R.: Thermal stability of zircon (ZrSiO4). J. Europ. Ceram. Soc. 28 (2008) [11] 2199–2211

Copyright

Göller Verlag GmbH