Ceramic Heat Pipes for High Temperature Application

Simon Unz, Michael Beckmann, Nina Hack

Technische Universität Dresden, Chair of Process Engineering, 01062 Dresden/Germany

Revision

Volume 10, Issue 4, Pages 72 - 78

Abstract

High temperature heat pipes with a ceramic container consisting out of sintered silicon carbide (SSiC) and with zinc as working fluid are investigated. To summarize the results, the performance of a singular bench­scale ceramic heat pipe (length 1070 mm, outer diameter 22 mm) can achieve up to more than 1000 W under test conditions. The best performance is reached with a filling amount of 100 g zinc as working fluid, which comes up to a filling height of about 11 % of the total heat pipe length under liquid conditions. The present operating temperature of the heat pipes on the heating gas side could be tested up to 980 °C, so that the temperature inside the heat pipe, which is equal to the boiling temperature of the working fluid, has to be a little bit lower than that point. The pressure inside the heat pipe is beneath the ambient pressure at up to 907 °C working fluid temperature.

Keywords

ceramic heat pipes, high temperature, thermosiphon, zinc, heat pipe heat exchanger

References

[1] Groll, M.: Heat pipe research and development in western Europe. Heat Recovery Systems & CHPs 9 (1989) [1] 19–66 [2] Karl, J.: Biomass heat pipe reformer – design and performance of an indirectly heated steam gasifer. Biomass Conversion and Biorefnery 4 (2014) [1] 1–14 [3] Strumpf, J.: Ceramic heat pipes for high­temperature heat recovery. Heat Recovery Systems 2 (1982) [2] 189–199 [4] Leimert, J.M.; Dillig, M.; Karl, J.: Hydrogen inactivation of liquid metal heat pipes. Int. J. of Heat and Mass Transfer 92 (2016) 920–928 [5] Tu, S.­T.; Zhang, H.; Zhou, W.­W.: Corrosion failures of high temperature heat pipes. Engineering Failure Analysis 6 (1999) 363–370 [6] Maier, H.J.; Niendorf, T.; Bürgel, R.: Handbuch Hochtemperatur­Werkstofftechnik, 5tg ed. Wiesbaden 2015 [7] Special Metals Corporation. INCONEL alloy 600. http://www.specialmetals.com/assets/ documents/alloys/inconel/inconel­alloy­600. pdf. [22.09.2016] [8] Merrigan, M.; Dunwoody, W.; Lundberg, L.: Heat pipe development for high temperature recuperator application. Heat Recovery Systems 2 (1982) [2] 125–135 [9] Unz, S.; Beckmann, M.: Berechnungsverfahren für die Auslegung von keramischen Wärmerohr­Wärmeübertragern. In: Hufenbach W. A.; Gude, M. (Eds.). ECEMP – Europ. Centre for Emerging Materials and Processes Dresden – Int. Kolloquium des Spitzentechnologieclus ters ECEMP 2011, Dresden, 2011 [10] Pause, J.; Beckmann, M.: Neue Anwendungsgebiete für Wärmerohre. In: Hufenbach, W. A.; Gude, M. (eds.). ECEMP – Europ. Centre for Emerging Materials and Processes Dresden – Int. Kolloquium des Spitzentechnologieclusters ECEMP 2010, Dresden, 2010 [11] Unz, S.: Keramische Wärmerohr­Wärmeübertrager für Hochtemperaturanwendungen. Dissertation, Technische Universität Dresden, 2012 [12] Herrmann, M.; Lippmann, W.; Hurtado, A.: Y O –Al O –SiO ­based glass­ceramic fillers for the laser­supported joining of SiC. J. Europ. Ceram. Soc. 34 (2014) [8] 1935–1948 [13] Meisel, P.; et al.: Design and manufacture of ceramic heat pipes for high temperature applications. Applied Thermal Engineering 75 (2015) 692–699 [14] Faghri, A.: Heat pipe science and technology. New York, London, 1995 [15] Reay, D.; Kew, P.: Heat pipes – theory, design and applications. 5th ed. Oxford, 2006 [16] Peterson, G.P.: Heat pipes – modelling, testing and applications. New York 1994 [17] Verband der Keramischen Industrie e.V. (ed.). Brevier Technische Keramik. 4th ed., Lauf an der Pegnitz, 2003 [18] Busse, C.A.: Theory of the ultimate heat transfer limit of cylindrical heat pipes. Int. J. of Heat and Mass Transfer 16 (1973) 169–186 [19] Verein Deutscher Ingenieure, VDI­Gesellschaft Verfahrenstechnik und Chemieingenieurwesen (ed.). VDI­Wärmeatlas. 10th ed., Berlin, 2006 [20] Yaws, C.L.: Transport properties of chemicals and hydrocarbons. Amsterdam, 2009 [21] Strumpf, H.J.; et al.: Advanced industrial ceramic heat pipe recuperators. Heat Recovery Systems & CHP 8 (1988) [3] 235–246 [22] Küttner Energy GmbH: Wärmerückgewinnung aus industriellen Prozessen. http:// www.kuettner.de/Default.aspx?ID=24. [28.08.2016] [23] Hack, N.; Unz, S.; Beckmann, M.: High temperature ceramic heat exchanger for heat recovery in coal and biomass gasifcation processes. Poster and Abstract. In: 6th Int. Freiberg Conf. on IGCC & XtL Technologies, Coal Conversion and Syngas, Dresden/Radebeul, 2014 [24] Paikert, P.: Wärmerohre in der industriellen Praxis. Chemie­Ingenieur­Technik 62 (1990) [4] 278–286 [25] Lee, Y.; Bedrossian, A.: The characteristics of heat exchangers using heat pipes or thermosyphons. Int. J. of Heat and Mass Transfer 21 (1978) 221–229

Copyright

Göller Verlag GmbH