Evaluation of a Microsilica-Based Additives in Al2O3–MgO Refractory Castables

V. C. Pandolfelli1, C. Pagliosa2, T. dos Santos Jr.3, L. F. Krol3, A. P. Luz3

1 Federal University of São Carlos, Materials Engineering Department, São Carlos SP 13565-90/Brazil
2 RHI Magnesita, Research and Development Center, Contagem MG 32210-050/Brazil
3 Federal University of São Carlos, Materials Engineering Department, São Carlos SP 13565-90/Brazil

Revision 18.03.2019, 01.04.2019

Volume 11, Issue 3, Pages 67 - 75


The first heating cycle of MgO-containing refractory castables is usually considered a challenge by the producers of such products due to the signifcant mass loss, associated with magnesium hydroxide decomposition between 350–450 °C, that might result in their spalling or even explosion. In order to allow faster and safer drying of this sort of refractory system, a microsilica-based additive (SioxX-Mag) has been developed. Thus, this work focused on investigating the action of this commercial additive in high-alumina castables bonded with 6 mass-% of MgO and prepared with the addition of formic acid. Flowability, hot Young’s modulus, thermogravimetric analyses, cold and hot mechanical measurements were carried out to infer the properties of the compositions with and without the selected SiO22-based product. According to the collected results, the addition of 1 mass-% of the microsilica-containing additive to the designed castables resulted in higher fow and reduced MgO hydration. Consequently, even when subjecting these samples to a very high heating rate (20 °C • min–1), no explosion was detected. When increasing the fring tempera-ture, the interaction among Al2O3–MgO–SiO22 induced the increase of the castables’ mechanical strength up to 900 °C, but liquid phase formation was identifed in the tested compositions above 1000 °C, causing the drop of their mechanical properties. Nevertheless, thermodynamic calculations and experimental tests indicated that the formed liquid should progressively react with the castables’ components, giving rise to refractory phases such as mullite and forsterite. Hence, the evaluated microsilica-based additive can be a potential solution to adjust the drying behavior and prevent the explosion of MgO-containing castables.


MgO, hydration, brucite, refractory, SioxX-Mag


[1] Salomão, R.; Bittencourt, L.R.M.; Pandolfelli, V.C.: A novel magnesia based binder (MBB) for refractory castables. Interceram. 58 (2009) 21–24 [2] Souza, T.M.; Braulio, M.A.L.; Luz, A.P.; Bonadia, P.; Pandolfelli, V.C.: Systemic analysis of MgO hydration effects on alumina – magnesia refractory castables. Ceram. Int. 38 (2012) 3969– 3976. doi:10.1016/j.ceramint.2012.01.051 [3] Souza, T.M.; Luz, A.P.; Braulio, M.A.L.; Pa- gliosa, C.; Pandolfelli, V.C.: Acetic acid role on magnesia hydration for cement-free refractory castables. J. Am. Ceram. Soc. 97 (2014) 1233– 1241 doi:10.1111/jace.12873 [4] Luz, A.P.; Consoni, L.B.; Pagliosa, C.; Aneziris, Ch.G.; Pandolfelli, V.C.: MgO fumes as a potential binder for in situ spinel containing refractory castables. Ceram. Int. (2018) doi:10.1016/j. ceramint.2018.05.201 [5] Thomas, J.J.; Musso, S.; Prestini, I.: Kinetics and activation energy of magnesium oxide hydration. J. Am. Ceram. Soc. 97 (2014) 275–282 doi:10.1111/jace.12661 [6] Amaral, L.F.; Oliveira, I.R.; Salomão, R.; Frollini, E.; Pandolfelli, V.C.: Temperature and commonion effect on magnesium oxide (MgO) hydration. Ceram. Int. 36 (2010) 1047–1054 doi:10.1016/j.ceramint.2009.12.009 [7] Birchal, V.S.S.; Rocha, S.D.F.; Ciminelli, V.S.T.: The effect of magnesite calcination conditions on magnesia hydration. Miner. Eng. 13 (2000) 1629–1633 doi:10.1016/S0892- 6875(00)00146-1 [8] Rocha, S.D.; Mansur, M.B.; Ciminelli, V.S.: Kinet- ics and mechanistic analysis of caustic magnesia hydration. J. Chem. Technol. Biotechnol. 79 (2004) 816–821 doi:10.1002/jctb.1038 [9] Birchal, V.S.; Rocha, S.D.F.; Mansur, M.B.; Ciminelli, V.S.T.: A Simplifed mechanistic analysis of the hydration of magnesia Can. J. Chem. Eng. 79 (2001) 507–511 [10] Salomão, R.; Arruda, C.C.; Souza, A.D.V.; Fernandes, L.: Novel insights into MgO hydroxylation: Effects of testing temperature, samples׳ volume and solid load. Ceram. Int. 40 (2014) 14809–14815 doi:10.1016/j.cera- mint.2014.06.074 [11] Amaral, L.F.; Oliveira, I.R.; Bonadia, P.; Salomão, R.; Pandolfelli,V.C.: Chelants to inhibit magnesia (MgO) hydration Ceram. Int. 37 (2011) 1537– 1542 doi:10.1016/j.ceramint. 2011.01.030 [12] Matabola, K.P.; van der Merwe, E.M.; Strydom, C.A.; Labuschagne, F.J.W.: The infuence of hydrating agents on the hydration of industrial magnesium oxide, J. Chem. Technol. Biotechnol. 85 (2010) 1569–1574. doi:10.1002/jctb.2467 [13] E.M. van der Merwe, C.A. Strydom, Hydration of medium reactive magnesium oxide using hydration agents. J. Therm. Anal. Calorim. 84 (2006) 467–471 doi:10.1007/s10973-005-7291-6 [14] Souza, T.M.; Luz, A.P.; Santos, T.; Gimenes, D.C.; Miglioli, M.M.; Correa, A.M. Pandolfelli, V.C.: Phosphate chemical binder as an anti- hydration additive for Al2 O3–MgO refractory castables. Ceram. Int. 40 (2014) 1503–1512 doi:10.1016/j.ceramint.2013.07.035 [15] Santos Jr., T.; Santos, J.; Luz, A.P.; Pagliosa, C.; Pandolfelli, V.C.: Kinetic control of MgO hydration in refractory castables by using carboxylic acids. J. Eur. Ceram. Soc. 38 (2018) 2152–2163 doi:10.1016/j.jeurceramsoc.2017.11.046 [16] Santos, T.; Luz, A.P.; Pagliosa, C.; Pandolfelli, V.C.: Mg(OH) 2 nucleation and growth parameters applicable for the development of MgO-based refractory castables. J. Am. Ceram. Soc. 99 (2016) 461–469 doi:10.1111/jace.14019 [17] Souza, T.M.; Braulio, M.A.L.; Pandolfelli, V.C.: Novel Technological Route to Overcome the Challenging Magnesia Hydration of Cement-Free Alumina Castables. refractories WORLDFORUM 5 (2013) [1] 93–98 [18] dos Santos, T.; Pinola, F.G.; Luz, A.P.; Pagliosa, C.; Pandolfelli, V.C.: Al2 O3–MgO refractory castables with enhanced explosion resistance due to in situ formation of phases with lamellar structure. Ceram. Int. 44 (2018) 8048–8056 doi:10.1016/j.ceramint.2018.01.246 [19] Salomão, R.; Pandolfelli, V.C.: The particle size distribution effect on the drying effciency of polymeric fibers containing castables. Ceram. Int. 34 (2008) 173–180 [20] Salomão, R.; Pandolfelli, V.C.: Polypropylene fibers and their effects on processing refractory castables. Int. J. Appl. Ceram. Technol. 4 (2007) 496–502 [21] Peng, H.; Myhre, B.; Ming, L.:Cement free MgO Castables Part II: Strength and Explosion Resistance, in: Proc. UNITECR 2013, 2013, p. 887– 892 [22] Sandberg, B.; Myhre, B.; Holm, J.L.:Castables in the system MgO–Al2 O3–SiO2, in: Proc. Unifed Int. Tech. Conf. Refract., Kyoto, Japan, 1995, p. 3–11 [23] Salomão, R.; Pandolfelli, V.C.: Microsilica addi- tion as an antihydration technique for magnesia-containing refractory castables. Am. Ceram. Soc. Bull. 86 (2007) 9301–9309 [24] Szczerba, J.; Prorok, R.; Czapka, Z.; Madej, D.; Sniezek, E.; Jastrzebska, I.: Infuence of microsilica on mechanical properties of basic castables, in: D. Goski, J. Smith (Eds.), UNITECR 2013 Proc. Unifed Int. Tech. Conf. Refract., Wiley, Victoria, Canada, 2013, p. 927–932 [25] Szczerba, J.; Prorok, R.; Sniezek, E.; Madej, D.; Maslona, K.: Infuence of time and temperature on ageing and phases synthesis in the MgO– SiO2–H2O system. Thermochim. Acta. 567 (2013) 57–64. doi:10.1016/j.tca.2013.01.018 [26] Kalousek, G.L.; Mui, D.: Studies on formation and recrystallization of intermediate reaction products in the system magnesia-silica- water. J. Am. Ceram. Soc. 37 (1954) 38–42 doi:10.1111/j.1151-2916.1954.tb14001.x [27] Bjorn, M.; Peng, H.; Ming, L.: Cement free MgO castables: part I: Flow, setting and slaking, in: Proc. UNITECR 2013, 2013, p. 881–886 [28] Zetterström, C.; Auvray, J.-M.; C. Wöhrmeyer, C.; Parr, Ch.: Enhanced permeability for a rapid dry- out of refractory castables, in: UNITECR 2015, 14th Bienn. Worldw. Congr., Viena, Austria, 2015, p. 1–4 [29] Auvray, J.-M.; Zetterström, C.; Wöhrmeyer, C.: The impact of permeability for a rapid dry-out of refractory castables, in: Proc. Unifed Int. Tech. Conf. Refract., Wien, 2015: 1–5. doi:101:1- 201506294612 [30] Luz, A.P.; Moreira, M.H.; Wohrmeyer, C.; Parr, Ch.; Pandolfelli, V.C.: Drying behavior optimization of dense refractory castables by adding a permeability enhancing active compound. Ceram. Int. (2019) doi:10.1016/j.cera- mint.2019.01.242 [31] Peng, H.; Luo, M.; Myhre, B.: New additive packages for self-fowing high-alumina and MgO based refractory castables, in: Proc. ALA- FAR Congr. 2012, Cancun, Mexico, 2012, p. 1–13, www.elkem.com/Global/ESM/support/ technical-papers/refractories/82- New-additive- packages-for -self-flowing-high-alumina-and- MgO-based-refractory-castables.pdf [32] Peng, H.; Myhre, B.: New additive package for microsilica gel-bonded MgO castables, in: Proc. 56th Int. Colloq. Refract., Aachen, Germany, 2013, p. 1–6 [33] Peng, H.; Myhre, B.: Microsilica-gel bonded self-fowing MgO castables using a new additive package, in: Proc. IREFCON, Kolkata, India, 2014, p. 1–7 [34] Dinger, D.R.; Funk, J.E.: Particle packing, part II: Review of packing of polydisperse particle systems. Interceram 41 (1992) 95–97 [35] Innocentini, M.D.M.; Cardoso, A.; Akyioshi, M.M.; Pandolfelli, V.C.: Drying stages during the heating of high-alumina, ultra-low-cement refractory castables. J. Am. Ceram. Soc. 86 (2003) 1146–1148 [36] ASTM International: Standard test method for dynamic Young’s modulus, shear modulus and Poisson’s ratio by sonic resonance (E1875-13), 2013, 1–9 doi:10.1520/E1875-08.2 [37] Luz, A.P.; Santos, T.; Medeiros, J.; Pandolfelli, V.C.: Thermal shock damage evaluation of re fractory castables via hot elastic modulus meas- urements. Ceram. Int. 39 (2013) 6189–6197 doi:10.1016/j.ceramint.2013.01.038 [38] ASTM International: Standard test methods for cold crushing strength and modulus of rupture of refractories (C133-97), 2003, 1–6 doi:10.1520/C0133-97R08E01.2 [39] ASTM International: Standard test methods for apparent porosity, liquid absorption , apparent specifc gravity, and bulk density of refractory shapes by vacuum pressure (C380-00), 2013, 1–5 doi:10.1520/C0830-06R11.2 [40] ASTM Standard: Test Method for Modulus of Rupture of Refractory Materials at Elevated Temperatures (C583-15), 2015, 1–6 doi:http:// dx.doi.org/10.1520/C0583-15 [41] Domen, K.; Yamamoto, H.;Watanabe, N.;Wada, A.; Hirose, C.: Sum-frequency generation and temperature-programed desorption studies of formic acid on MgO(001) surfaces. Appl. Phys. A Mater. Sci. Process. 60 (1995) 131–135 doi:10.1007/BF01538237 [42] Peng, X.D.; Barteau, M.A.: Dehydration of carboxylic acids on the MgO(100) surface. Catal. Letters. 7 (1991) 395–402 doi:10.1007/ BF00764930 [43] Yamamoto, H.;Watanabe,N.; Wada, A.; Domen, K.; Hirose, C.: Adsorption and decomposition of formic acid on MgO(001) surface as investigat- ed by temperature programmed desorption and sum-frequency generation spectroscopy: Recurrence induced defect sites. J. Chem. Phys. 106 (1997) 4734 doi:10.1063/1.473470 [44] Ball, M.C.; Taylor, H.F.W.: The Dehydration of Brucite. Mineral. Mag. 32 (1961) 754–766 doi:10.1180/minmag.1961.032.253.02 [45] Green, J.: Calcination of precipitated Mg(OH)2 to active MgO in the production of refractory and chemical grade MgO. J. Mater. Sci. 18 (1983) 637–651 doi:10.1007/BF00745561 [46] Wang, J.; Novaro, O.; Bokhimi, X.; López, T.; Gómez, R.; Navarrete, J.; Llanos, M.-E.; López- Salinas, E.: Characterizations of the thermal decomposition of brucite prepared by sol-gel technique for synthesis of nanocrystalline MgO. Mater. Lett. 35 (1998) 317–323. doi:10.1016/ S0167-577X(97)00273-5 [47] Hundere, A.; Myhre, B.; Odegard, C.; Sandberg, B.; Zhou, N.; Zhang, S.; Bi, Z.; Chen, Z.: Magnesium-Silicate-Hydrate bonded MgO–Al 2 O 3 castables, in: Proc. Annu. Conf. Metall., Quebec, Canada, 1999, p. 2–7.


Göller Verlag GmbH